FIGURE

Fig. 6

ID
ZDB-FIG-190827-19
Publication
Olmer et al., 2018 - Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture
Other Figures
All Figure Page
Back to All Figure Page
Fig. 6

Vascular Competence of Early and Late hiPSC-Derived EC Passages in a Zebrafish Xenograft Model

Early (P1) passage hiPSC-ECs (green, hCBiPSCAGeGFP) within the embryonic zebrafish vasculature [marked by Tg(fli1a:mCherry-NLS)ubs10, red)] 1 day after transplantation (A). Scale bar, 300 μm. Details of vessels with P1 hiPSC-EC (green) integration into the Tg(fli1a:mCherry-NLS)ubs10 transgenic embryonic zebrafish vasculature (red) (B–D). Scale bar, 50 μm. Late (P11) passage hiPSC-ECs (green) within the Tg(fli1a:mCherry-NLS)ubs10 transgenic embryonic zebrafish vasculature (red) 1 day after transplantation (E). Scale bar, 300 μm. Details of vessel with P11 hiPSC-EC (green) integration into the Tg(fli1a:mCherry-NLS)ubs10 transgenic embryonic zebrafish vasculature (red) (F–H). Scale bar, 50 μm. Quantification of integration rates of early and late hiPSC-ECs compared with early (P1, P4, and P5) and late (P14) hUVECs into the zebrafish embryonic vasculature 1 day after transplantation. Integration rates into the zebrafish vasculature were 61.9% (n = 83/134 embryos) for early hiPSC-ECs and 78.3% (n = 112/143 embryos) for late hiPSC-ECs. ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001 (I).

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ Stem Cell Reports