Fig. 3
- ID
- ZDB-FIG-180913-66
- Publication
- de Vos et al., 2018 - Functional analysis of a hypomorphic allele shows that MMP14 catalytic activity is the prime determinant of the Winchester syndrome phenotype
- Other Figures
- All Figure Page
- Back to All Figure Page
The mmp14a/b KO zebrafish recapitulate key aspects of the WS phenotype. (A) Gross anatomy photographs of 3-month-old WT and mmp14a/b KO fish of respective average size; lateral view, anterior to the left. The phenotype of mmp14a/b KO fish includes a relatively small, up-tilted head with relatively large, protruding eyes and a short operculum. Limited field of view necessitated stitching of multiple photographs together, causing the vertical line in the images shown in (A). Scale bar equals 2 mm. (B) At 90 dpf, mmp14a/b KO fish have a significantly shorter total body length compared with WT fish (P < 0.0001). A minimum of 21 individuals per genotype was measured. (C) 3D reconstruction of µCT scans of 3-month-old WT and mmp14a/b KO fish; lateral view, anterior to the left. Compared with WT fish, the mmp14a/b KO fish have Weberian-prehemal hyperkyphosis. (D) The mmp14a/b KO fish have a reduced skull bone mineral density (BMD, P < 0.05), giving the appearance of missing skeletal elements in the shown 3D reconstruction (C). BMD was assessed for five individuals per genotype. The individuals imaged in (C) are different from the ones shown in (A). |
Fish: | |
---|---|
Observed In: | |
Stage: | Adult |