FIGURE

Fig. 3

ID
ZDB-FIG-171006-7
Publication
Xiyuan et al., 2017 - NO-sGC Pathway Modulates Ca2+ Release and Muscle Contraction in Zebrafish Skeletal Muscle.
Other Figures
All Figure Page
Back to All Figure Page
Fig. 3

Effect of NO on biophysical parameters of isolated zebrafish myocyte Ca2+ transients. (A) Photomicrography of isolated zebrafish myocytes under light microscope. (B) Photomicrography of the same myocyte shown in (A) loaded with 10 μM Fluo4-AM and seen under fluorescence microscope. (C) Representative Ca2+ transient's traces obtained from electrical field stimulation. Control represented in black, 00 μM SNAP in blue, and 5 mM L-NAME in red. Statistical analyses of Ca2+ transients' biophysical parameters: (D) Peak (nM), (E) Duration50 (ms), (F) Peak Area (nM*s), (G) Time to Peak (ms), (H) Slope (μM/s), (I) Uptake Time (ms), and (J) Tau (s). Values are expressed as median; 25–75%. *p < 0.05, **p < 0.01, ***p < 0.001 vs. control; n = 278 cells for control, 153 cells for SNAP and 106 cells for L-NAME.

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ Front. Physiol.