FIGURE

Fig. 3

ID
ZDB-FIG-120126-3
Publication
Peukert et al., 2011 - Lhx2 and lhx9 determine neuronal differentiation and compartition in the caudal forebrain by regulating wnt signaling
Other Figures
All Figure Page
Back to All Figure Page
Fig. 3

Lhx2 promotes thalamic neurogenesis.

At 24 hpf, DNA (indicated in red) was injected into the brain ventricle followed by electroporation approach (a). To validate the specificity and efficiency, we targeted one hemisphere of the thalamus territory with EGFP DNA at 24 hpf. We find a co-localization with the thalamus-specific marker barhl2:mCherry at 48 hpf (b). Analysis of cross-sections reveal that electroporation of EGFP DNA does not alter the expression of lef1 in wt embryos (c). Furthermore, we find strong down-regulation of lef1 in lhx2/lhx9 morphant embryos, which is not altered by EGFP DNA electroporation (d). After electroporation of lhx2 DNA, we observe an unaltered expression of id2a, lef1, and Elavl3-GFP expression within the endogenous expression site in the electroporated hemispheres (e, g, i). Electroporated side was identified by an ISH against lhx2 mRNA in red. However, electroporation of lhx2 DNA at 24 hpf can restore the expression of id2a, lef1, and Elavl3-GFP in Lhx2/Lhx9-deficient embryos (f, g, j; asterisk). Notably, electroporation of Lhx2 can ectopically induce id2a expression in the basal plate—that is, in the pTu (f). pTu, posterior tuberculum; RP, roof plate, Tec, tectum; Tel, telencephalon.

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ PLoS Biol.