ZFIN ID: ZDB-LAB-110209-2
Sidi Lab
PI/Director: Sidi, Samuel
Contact Person: Sidi, Samuel
Email: samuel.sidi@mssm.edu
URL: http://drb.mssm.edu/labs/sidi.html
Address: 1468 Madison Ave Annenberg 24-16 New York, NY 10029
Country: United States
Phone: 212-241-7087
Fax:
Line Designation: None assigned


GENOMIC FEATURES ORIGINATING FROM THIS LAB No data available


STATEMENT OF RESEARCH INTERESTS
To identify molecular liabilities associated with specific cancer genotypes, we take genetic and chemical-genetic approaches in the zebrafish system, complemented with validation studies in cultured human cancer cell lines. Like mice, zebrafish are vertebrates that faithfully recapitulate the core pathways of human oncogenesis. Decisively, however, zebrafish also offer the high-throughput capacity and genetic tractability of flies or worms. Another key advantage of the zebrafish model for identifying targets for systemic inhibition in humans is the system’s whole-body capacity, especially at the embryonic stage. Genetic or pharmacologic manipulation of large clutches of externally developing embryos not only enables target discovery, but also affords preclinical studies in which the therapeutic versus toxic effects of drugs can be analyzed with unparalleled spatial resolution in intact animals. Once we identify a promising target, we can unravel its mechanism of action through morpholino-based epistasis analysis in live embryos, and readily assess the human relevance of our findings via RNAi and biochemical studies in cancer cell lines.
Taking this integrated approach, we previously discovered that vertebrate cells deficient in the p53 tumor suppressor gene are hyperdependent on the Chk1 protein kinase for survival after radiation-induced DNA damage (Sidi et al., Cell 133:864-877, 2008). Genetic or pharmacologic inhibition of Chk1 is sufficient to restore an apoptotic response to ionizing radiation (IR) in otherwise radioresistant p53 mutant zebrafish embryos or human cancer cells, thereby overriding a major mechanism by which tumor cells evade radiation therapy (p53 is mutated in over 50% of human solid tumors). Surprisingly, we found that the mechanism by which Chk1 inhibition restores apoptosis in p53-deficient cells does not rely on reactivation of classical mitochondrial or death-receptor signaling downstream of malfunctional p53. Instead, Chk1-inhibited cells appear to trigger a fundamentally new form of apoptosis, designated “Chk1-suppressed” pathway, which involves the DNA damage-response kinases, ATM and ATR, and the highly conserved but poorly understood caspase-2 protease.
A second focus in the lab is to identify novel cancer liabilities by applying the genetic concept of synthetic lethality to cancer-relevant genotypes. As originally described in yeast, two genes are said to be synthetically lethal if mutation of either alone is viable but simultaneous mutation of both genes is lethal. This concept provides an attractive framework for identifying optimal targets for cancer therapy, because targeting a gene synthetically lethal to a cancer lesion should be deadly to cancer cells but harmless to all other cells in the body. The whole-animal and high-throughput capacities of the zebrafish embryo make it an ideal model system in which to identify synthetic lethal interactors of common molecular alterations in cancer, and we recently obtained proof of principle for the strategy. We are currently focusing on identifying synthetic lethal interactors of the PTEN tumor suppressor by examining the zebrafish orthologs of genes essential for the viability of PTEN mutant, but not PTEN wild-type, cultured cancer cell lines, in collaboration with Pr Alan Ashworth (ICR, UK).


LAB MEMBERS
Ando, Kiyohiro Post-Doc Di Giandomenico, Silvana Post-Doc Thompson, Ruth Post-Doc
Liu, Peter H. Graduate Student Kernan, Jennifer Research Staff Closser, Evan Fish Facility Staff
Mernacej, Jolanda Administrative Staff


ZEBRAFISH PUBLICATIONS OF LAB MEMBERS
Li, Y., Shah, R.B., Sarti, S., Belcher, A.L., Lee, B.J., Gorbatenko, A., Nemati, F., Yu, H., Stanley, Z., Rahman, M., Shao, Z., Silva, J.M., Zha, S., Sidi, S. (2023) A noncanonical IRAK4-IRAK1 pathway counters DNA damage-induced apoptosis independently of TLR/IL-1R signaling. Science signaling. 16:eadh3449eadh3449
Shah, R.B., Kernan, J.L., van Hoogstraten, A., Ando, K., Li, Y., Belcher, A.L., Mininger, I., Bussenault, A.M., Raman, R., Ramanagoudr-Bhojappa, R., Huang, T.T., D'Andrea, A.D., Chandrasekharappa, S.C., Aggarwal, A.K., Thompson, R., Sidi, S. (2021) FANCI functions as a repair/apoptosis switch in response to DNA crosslinks. Developmental Cell. 56:2207-2222.e7
Lee, S.H., Hadipour-Lakmehsari, S., Murthy, H.R., Gibb, N., Miyake, T., Teng, A.C.T., Cosme, J., Yu, J.C., Moon, M., Lim, S., Wong, V., Liu, P., Billia, F., Fernandez-Gonzalez, R., Stagljar, I., Sharma, P., Kislinger, T., Scott, I.C., Gramolini, A.O. (2020) REEP5 depletion causes sarco-endoplasmic reticulum vacuolization and cardiac functional defects. Nature communications. 11:965
Liu, P.H., Sidi, S. (2019) Targeting the Innate Immune Kinase IRAK1 in Radioresistant Cancer: Double-Edged Sword or One-Two Punch?. Frontiers in oncology. 9:1174
Liu, P.H., Shah, R.B., Li, Y., Arora, A., Ung, P.M., Raman, R., Gorbatenko, A., Kozono, S., Zhou, X.Z., Brechin, V., Barbaro, J.M., Thompson, R., White, R.M., Aguirre-Ghiso, J.A., Heymach, J.V., Lu, K.P., Silva, J.M., Panageas, K.S., Schlessinger, A., Maki, R.G., Skinner, H.D., de Stanchina, E., Sidi, S. (2019) An IRAK1-PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy. Nature cell biology. 21(2):203-213
Ando, K., Parsons, M.J., Shah, R.B., Charendoff, C.I., Paris, S.L., Liu, P.H., Fassio, S.R., Rohrman, B.A., Thompson, R., Oberst, A., Sidi, S., Bouchier-Hayes, L. (2017) NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus. The Journal of cell biology. 216:1795-1810
Chen, C.C., Kennedy, R.D., Sidi, S., Look, A.T., and D'Andrea, A.D. (2009) CHK1 inhibition as a strategy for targeting fanconi anemia (FA) DNA repair pathway deficient tumors. Molecular Cancer. 8:24
Sidi, S., Sanda, T., Kennedy, R.D., Hagen, A.T., Jette, C.A., Hoffmans, R., Pascual, J., Imamura, S., Kishi, S., Amatruda, J.F., Kanki, J.P., Green, D.R., D'Andrea, A.A., and Look, A.T. (2008) Chk1 Suppresses a Caspase-2 Apoptotic Response to DNA Damage that Bypasses p53, Bcl-2, and Caspase-3. Cell. 133(5):864-877
Obholzer, N., Wolfson, S., Trapani, J.G., Mo, W., Nechiporuk, A., Busch-Nentwich, E., Seiler, C., Sidi, S., Söllner, C., Duncan, R.N., Boehland, A., and Nicolson, T. (2008) Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28(9):2110-2118
Geisler, R., Rauch, G.J., Geiger-Rudolph, S., Albrecht, A., van Bebber, F., Berger, A., Busch-Nentwich, E., Dahm, R., Dekens, M.P., Dooley, C., Elli, A.F.,Gehring, I., Geiger, H., Geisler, M., Glaser, S., Holley, S., Huber, M., Kerr, A., Kirn, A., Knirsch, M., Konantz, M., Kuchler, A.M., Maderspacher, F., Neuhauss, S.C., Nicolson, T., Ober, E.A., Praeg, E., Ray, R., Rentzsch, B., Rick, J.M., Rief, E., Schauerte, H.E., Schepp, C.P., Schonberger, U., Schonthaler, H.B., Seiler, C., Sidi, S., Söllner, C., Wehner, A., Weiler, C., Nüsslein-Volhard, C. (2007) Large-scale mapping of mutations affecting zebrafish development. BMC Genomics. 8(1):11
Sidi, S., and Look, A.T. (2005) Small molecules thwart crash and burn. Nature Chemical Biology. 1(7):351-353
Shin, J.B., Adams, D., Paukert, M., Siba, M., Sidi, S., Levin, M., Gillespie, P.G., and Grunder, S. (2005) Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Proceedings of the National Academy of Sciences of the United States of America. 102(35):12572-12577
Seiler, C., Ben-David, O., Sidi, S., Hendrich, O., Rusch, A., Burnside, B., Avraham, K.B., and Nicolson, T. (2004) Myosin VI is required for structural integrity of the apical surface of sensory hair cells in zebrafish. Developmental Biology. 272(2):328-338
Sidi, S., and Rosa, F.M. (2004) Mechanotransduction of hemodynamic forces regulates organogenesis. Medecine sciences : M/S. 20(5):557-561
Paukert, M., Sidi, S., Russell, C., Siba, M., Wilson, S.W., Nicolson, T., and Grunder, S. (2004) A family of acid-sensing ion channels (ASICs) from the zebrafish: Widespread expression in the central nervous system suggests a conserved role in neuronal communication. The Journal of biological chemistry. 279(18):18783-18791
Sidi, S., Busch-Nentwich, E., Friedrich, R., Schoenberger, U., and Nicolson, T. (2004) gemini encodes a zebrafish L-type calcium channel that localizes at sensory hair cell ribbon synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24(17):4213-4223
Concha, M.L., Russell, C., Regan, J.C., Tawk, M., Sidi, S., Gilmour, D.T., Kapsimali, M., Sumoy, L., Goldstone, K., Amaya, E., Kimelman, D., Nicolson, T., Gründer, S., Gomperts, M., Clarke, J.D.W., and Wilson, S.W. (2003) Local tissue interactions across the dorsal midline of the forebrain establish CNS laterality. Neuron. 39(3):423-438
Sidi, S., Friedrich, R.W., and Nicolson, T. (2003) NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science (New York, N.Y.). 301(5629):96-99
Sidi, S., Goutel, C., Peyriéras, N., and Rosa, F.M. (2003) Maternal induction of ventral fate by zebrafish radar. Proceedings of the National Academy of Sciences of the United States of America. 100(6):3315-3320
Willot, V., Mathieu, J., Lu, Y., Schmid, B., Sidi, S., Yan, Y.-L., Postlethwait, J.H., Mullins, M., Rosa, F., and Peyriéras, N. (2002) Cooperative action of ADMP- and BMP-mediated pathways in regulating cell fates in the zebrafish gastrula. Developmental Biology. 241(1):59-78