PUBLICATION
Loss of Krüppel-like factor 9 deregulates both physiological gene expression and development
- Authors
- Drepanos, L., Gans, I.M., Grendler, J., Guitar, S., Fuqua, J.H., Maki, N.J., Tilden, A.R., Graber, J.H., Coffman, J.A.
- ID
- ZDB-PUB-230729-47
- Date
- 2023
- Source
- Scientific Reports 13: 1223912239 (Journal)
- Registered Authors
- Coffman, James A., Gans, Ian, Grendler, Janelle
- Keywords
- none
- MeSH Terms
-
- Animals
- Gene Expression
- Gene Expression Regulation
- Kruppel-Like Transcription Factors*/metabolism
- RNA, Messenger/metabolism
- Zebrafish*/genetics
- Zebrafish*/metabolism
- PubMed
- 37507475 Full text @ Sci. Rep.
Citation
Drepanos, L., Gans, I.M., Grendler, J., Guitar, S., Fuqua, J.H., Maki, N.J., Tilden, A.R., Graber, J.H., Coffman, J.A. (2023) Loss of Krüppel-like factor 9 deregulates both physiological gene expression and development. Scientific Reports. 13:1223912239.
Abstract
Krüppel-like factor 9 (Klf9) is a ubiquitously expressed transcription factor that is a feedforward regulator of multiple stress-responsive and endocrine signaling pathways. We previously described how loss of Klf9 function affects the transcriptome of zebrafish larvae sampled at a single time point 5 days post-fertilization (dpf). However, klf9 expression oscillates diurnally, and the sampled time point corresponded to its expression nadir. To determine if the transcriptomic effects of the klf9-/- mutation vary with time of day, we performed bulk RNA-seq on 5 dpf zebrafish embryos sampled at three timepoints encompassing the predawn peak and midmorning nadir of klf9 expression. We found that while the major effects of the klf9-/- mutation that we reported previously are robust to time of day, the mutation has additional effects that manifest only at the predawn time point. We used a published single-cell atlas of zebrafish development to associate the effects of the klf9-/- mutation with different cell types and found that the mutation increased mRNA associated with digestive organs (liver, pancreas, and intestine) and decreased mRNA associated with differentiating neurons and blood. Measurements from confocally-imaged larvae suggest that overrepresentation of liver mRNA in klf9-/- mutants is due to development of enlarged livers.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping