PUBLICATION

Clinical, neuroradiological and molecular characterization of mitochondrial threonyl-tRNA-synthetase (TARS2)-related disorder

Authors
Accogli, A., Lin, S.J., Severino, M., Kim, S.H., Huang, K., Rocca, C., Landsverk, M., Zaki, M., Al-Maawali, A., Srinivasan, V.M., Al-Thihli, K., Schaefer, G.B., Davis, M., Tonduti, D., Doneda, C., Marten, L.M., Mühlhausen, C., Gomez, M., Lamantea, E., Mena, R., Nizon, M., Procaccio, V., Begtrup, A., Telegrafi, A., Cui, H., Schulz, H.L., Mohr, J., Biskup, S., Loos, M.A., Aráoz, H.V., Salpietro, V., Keppen, L.D., Chitre, M., Petree, C., Raymond, L., Vogt, J., Swayer, L.B., Basinger, A.A., Pedersen, S.V., Pearson, T.S., Grange, D.K., Lingapp, L., McDunnah, P., Horvath, R., Cogne, B., Isidor, B., Hahn, A., Gripp, K., Jafarnejad, S.M., Ostergaard, E., Prada, C.E., Ghezzi, D., Gowda, V.K., Taylor, R.W., Sonenberg, N., Houlden, H., Sissler, M., Varshney, G.K., Maroofian, R.
ID
ZDB-PUB-230716-47
Date
2023
Source
Genetics in medicine : official journal of the American College of Medical Genetics   25(11): 100938 (Journal)
Registered Authors
Horvath, Rita, Lin, Sheng-Jia, Varshney, Gaurav
Keywords
TARS2, cerebellar atrophy, mTORC1 signaling, mitochondrial dysfunction, mitochondrial threonyl-tRNA-synthetase, white matter
MeSH Terms
  • RNA, Transfer*
  • Mutation
  • Humans
  • Phenotype
  • Animals
  • Ligases
  • Zebrafish*/genetics
  • Mechanistic Target of Rapamycin Complex 1
(all 8)
PubMed
37454282 Full text @ Genet. Med.
Abstract
Biallelic variants in TARS2, encoding the mitochondrial threonyl-tRNA-synthetase, have been reported in a small group of individuals displaying a neurodevelopmental phenotype, but with limited neuroradiological data and insufficient evidence for causality of the variants.
Exome or genome sequencing was carried out in 15 families. Clinical and neuroradiological evaluation was performed for all affected individuals, including review of 10 previously reported individuals. The pathogenicity of TARS2 variants was evaluated using in vitro assays, and a zebrafish model.
We report 18 new individuals harboring biallelic TARS2 variants. Phenotypically, these individuals show developmental delay/intellectual disability, regression, cerebellar and cerebral atrophy, basal ganglia signal alterations, hypotonia, cerebellar signs and increased blood lactate. In vitro studies showed that variants within the TARS2301-381 region had decreased binding to Rag GTPases, likely impairing mTORC1 activity. The zebrafish model recapitulated key features of the human phenotype and unraveled dysregulation of downstream targets of mTORC1 signaling. Functional testing of the variants confirmed the pathogenicity in a zebrafish model.
We define the clinico-radiological spectrum of TARS2-related mitochondrial disease, unveil the likely involvement of the mTORC1 signaling pathway as a distinct molecular mechanism, and establish a TARS2 zebrafish model as an important tool to study variant pathogenicity.
Genes / Markers
Figures
Figure Gallery (5 images)
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Allele Construct Type Affected Genomic Region
vu19TgTransgenic Insertion
    1 - 1 of 1
    Show
    Human Disease / Model
    No data available
    Sequence Targeting Reagents
    Target Reagent Reagent Type
    tars2MO1-tars2MRPHLNO
    1 - 1 of 1
    Show
    Fish
    Antibodies
    No data available
    Orthology
    No data available
    Engineered Foreign Genes
    Marker Marker Type Name
    DsRed2EFGDsRed2
    1 - 1 of 1
    Show
    Mapping
    No data available