PUBLICATION

Protective mechanisms of a microbial oil against hypercholesterolemia: evidence from a zebrafish model

Authors
Gora, A.H., Rehman, S., Dias, J., Fernandes, J.M.O., Olsvik, P.A., Sørensen, M., Kiron, V.
ID
ZDB-PUB-230712-46
Date
2023
Source
Frontiers in nutrition   10: 11611191161119 (Journal)
Registered Authors
Fernandes, Jorge
Keywords
DHA, EPA, RNA seq, bioactive compounds, cardiovascular disease, plasma lipidomics
MeSH Terms
none
PubMed
37435570 Full text @ Front Nutr
Abstract
A Western diet elevates the circulating lipoprotein and triglyceride levels which are the major risk factors in cardiovascular disease (CVD) development. Consumption of long-chain omega-3 fatty acids can stall the disease progression. Although these fatty acids can significantly impact the intestine under a hypercholesterolemic condition, the associated changes have not been studied in detail. Therefore, we investigated the alterations in the intestinal transcriptome along with the deviations in the plasma lipids and liver histomorphology of zebrafish offered DHA- and EPA-rich oil. Fish were allocated to 4 dietary treatments: a control group, a high cholesterol group and microbial oil groups with low (3.3%) and high (6.6%) inclusion levels. We quantified the total cholesterol, lipoprotein and triglyceride levels in the plasma. In addition, we assessed the liver histology, intestinal transcriptome and plasma lipidomic profiles of the study groups. The results suggested that higher levels of dietary microbial oil could control the CVD risk factor indices in zebrafish plasma. Furthermore, microbial oil-fed fish had fewer liver vacuoles and higher mRNA levels of genes involved in β-oxidation and HDL maturation. Analyses of the intestine transcriptome revealed that microbial oil supplementation could influence the expression of genes altered by a hypercholesterolemic diet. The plasma lipidomic profiles revealed that the higher level of microbial oil tested could elevate the long-chain poly-unsaturated fatty acid content of triglyceride species and lower the concentration of several lysophosphatidylcholine and diacylglycerol molecules. Our study provides insights into the effectiveness of microbial oil against dyslipidemia in zebrafish.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping