PUBLICATION
            The role of mip in the development of lens in zebrafish
- Authors
- He, M., Zhou, G., Lin, Q., Zhou, N.
- ID
- ZDB-PUB-230628-49
- Date
- 2023
- Source
- Gene expression patterns : GEP 49: 119330 (Journal)
- Registered Authors
- Keywords
- Cas9, Knock out, Lens, Zebrafish, mip
- MeSH Terms
- 
    
        
        
            
                - Cataract*/genetics
- Cataract*/metabolism
- Cataract*/pathology
- Lens, Crystalline*/metabolism
- Lens, Crystalline*/pathology
- Animals
- Zebrafish/genetics
- Zebrafish/metabolism
- Aquaporins*/metabolism
- Eye Proteins/genetics
- Eye Proteins/metabolism
 
- PubMed
- 37369320 Full text @ Gene Expr. Patterns
            Citation
        
        
            He, M., Zhou, G., Lin, Q., Zhou, N. (2023) The role of mip in the development of lens in zebrafish. Gene expression patterns : GEP. 49:119330.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Major intrinsic protein (MIP) functions as a water channel and a cell-junction molecule in the vertebrate eye lens. The pathogenic mechanism behind the loss of MIP function in the lens, which leads to degraded optical quality and cataract formation, is still unclear. In this study, a zebrafish model with the mipb mutant was produced. The expression of mipb mRNA and protein was dramatically reduced in the mutant. Immunological analysis reveals that loss function of mip leads to the diffuse distribution of ZL-1 in the mutant lens. Furthermore, in situ hybridization reveals that mip knockout results in a decrease in the transcripts of beaded filament structural protein 2 (Bfsp2) in the lens. Histology study shows that lens fibers in the mutants are less uniform in shape and the fiber arrangement is disrupted. The presented data provides evidence for the essential role of mipb in the development of lens fibers. The absence of mipb during lens formation is likely to result in aberrant lens fiber formation and impaired lens function.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    