PUBLICATION
            Loss of the crumbs cell polarity complex disrupts epigenetic transcriptional control and cell cycle progression in the developing retina
- Authors
- Owen, N., Toms, M., Tian, Y., Toualbi, L., Richardson, R., Young, R., Tracey-White, D., Dhami, P., Beck, S., Moosajee, M.
- ID
- ZDB-PUB-230120-2
- Date
- 2023
- Source
- The Journal of pathology 259(4): 441-454 (Journal)
- Registered Authors
- Young, Rodrigo
- Keywords
- DNA methylation, Polarity complex, RNA-seq, epigenome, iPSC, retina, transcriptome, zebrafish
- Datasets
- GEO:GSE178709, GEO:GSE178842
- MeSH Terms
- 
    
        
        
            
                - Animals
- Cell Polarity*/genetics
- Membrane Proteins/metabolism
- Retina/metabolism
- Epigenesis, Genetic
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
- Cell Cycle
- Zebrafish*/genetics
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Humans
- Nerve Tissue Proteins/metabolism
 
- PubMed
- 36656098 Full text @ J. Pathol.
            Citation
        
        
            Owen, N., Toms, M., Tian, Y., Toualbi, L., Richardson, R., Young, R., Tracey-White, D., Dhami, P., Beck, S., Moosajee, M. (2023) Loss of the crumbs cell polarity complex disrupts epigenetic transcriptional control and cell cycle progression in the developing retina. The Journal of pathology. 259(4):441-454.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                The crumbs cell polarity complex plays a crucial role in apical-basal epithelial polarity, cellular adhesion, and morphogenesis. Homozygous variants in human CRB1 result in autosomal recessive Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP), with no established genotype-phenotype correlation. The associated protein complexes have key functions in developmental pathways; however the underlying disease mechanism remains unclear. Using the oko meduzym289/m289 (crb2a-/- ) zebrafish, we performed integrative transcriptomic (RNA-seq data) and methylomic (reduced representation bisulphite sequencing, RRBS) analysis of whole retina to identify dysregulated genes and pathways. Delayed retinal cell specification was identified in both the crb2a-/- zebrafish and CRB1 patient-derived retinal organoids, highlighting dysfunction of cell cycle modulation and epigenetic transcriptional control. Differential DNA methylation analysis revealed novel hypermethylated pathways involving biological adhesion, Hippo and transforming growth factor β (TGFβ) signalling. By integrating gene expression with DNA methylation using functional epigenetic modules (FEM), we identified 6 key modules involving cell cycle control and disturbance of TGFβ, BMP, Hippo, and SMAD protein signal transduction pathways, revealing significant interactome hotspots relevant to crb2a function, confirming the epigenetic control of gene regulation in early retinal development and points to a novel mechanism underlying CRB1-retinopathies. This article is protected by copyright. All rights reserved.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    