PUBLICATION
            Notch controls the cell cycle to define leader versus follower identities during collective cell migration
- Authors
- Alhashem, Z., Feldner-Busztin, D., Revell, C., Alvarez-Garcillan Portillo, M., Camargo-Sosa, K., Richardson, J., Rocha, M., Gauert, A., Corbeaux, T., Milanetto, M., Argenton, F., Tiso, N., Kelsh, R., Prince, V.E., Bentley, K., Linker, C.
- ID
- ZDB-PUB-220420-4
- Date
- 2022
- Source
- eLIFE 11: (Journal)
- Registered Authors
- Argenton, Francesco, Kelsh, Robert, Linker, Claudia, Milanetto, Martina, Prince, Victoria E., Rocha, Manuel, Tiso, Natascia
- Keywords
- developmental biology, zebrafish
- MeSH Terms
- 
    
        
        
            
                - Signal Transduction
- Animals
- Cell Movement/physiology
- Cell Division
- Zebrafish*/physiology
- Neural Crest*
 
- PubMed
- 35438077 Full text @ Elife
            Citation
        
        
            Alhashem, Z., Feldner-Busztin, D., Revell, C., Alvarez-Garcillan Portillo, M., Camargo-Sosa, K., Richardson, J., Rocha, M., Gauert, A., Corbeaux, T., Milanetto, M., Argenton, F., Tiso, N., Kelsh, R., Prince, V.E., Bentley, K., Linker, C. (2022) Notch controls the cell cycle to define leader versus follower identities during collective cell migration. eLIFE. 11:.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Coordination of cell proliferation and migration is fundamental for life, and its dysregulation has catastrophic consequences, such as cancer. How cell cycle progression affects migration, and vice-versa, remains largely unknown. We address these questions by combining in-silico modelling and in vivo experimentation in the zebrafish Trunk Neural Crest (TNC). TNC migrate collectively, forming chains with a leader cell directing the movement of trailing followers. We show that the acquisition of migratory identity is autonomously controlled by Notch signalling in TNC. High Notch activity defines leaders, while low Notch determines followers. Moreover, cell cycle progression is required for TNC migration and is regulated by Notch. Cells with low Notch activity stay longer in G1 and become followers, while leaders with high Notch activity quickly undergo G1/S transition and remain in S-phase longer. In conclusion, TNC migratory identities are defined through the interaction of Notch signalling and cell cycle progression.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    