PUBLICATION
            Intestinal Disorder in Zebrafish Larvae (Danio rerio): The Protective Action of N-Palmitoylethanolamide-oxazoline
- Authors
 - Di Paola, D., Natale, S., Iaria, C., Cordaro, M., Crupi, R., Siracusa, R., D'Amico, R., Fusco, R., Impellizzeri, D., Cuzzocrea, S., Spanò, N., Gugliandolo, E., Peritore, A.F.
 - ID
 - ZDB-PUB-220126-8
 - Date
 - 2022
 - Source
 - Life (Basel, Switzerland) 12(1): (Journal)
 - Registered Authors
 - Keywords
 - DSS, PEAOXA, inflammation
 - MeSH Terms
 - none
 - PubMed
 - 35054518 Full text @ Life (Basel)
 
            Citation
        
        
            Di Paola, D., Natale, S., Iaria, C., Cordaro, M., Crupi, R., Siracusa, R., D'Amico, R., Fusco, R., Impellizzeri, D., Cuzzocrea, S., Spanò, N., Gugliandolo, E., Peritore, A.F. (2022) Intestinal Disorder in Zebrafish Larvae (Danio rerio): The Protective Action of N-Palmitoylethanolamide-oxazoline. Life (Basel, Switzerland). 12(1):.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                IBD (Inflammatory Bowel Disease) is an inflammatory disease affecting the gastrointestinal tract that is common in both humans and veterinarians. Several studies have revealed the pharmacological properties of the oxazoline of palmitoylethanolamide (PEAOXA). Zebrafish larvae were exposed to sodium dextran sulphate (DSS) to induce enterocolitis and study the protective action of PEAOXA. After repetitive exposure with 0.25% DSS, larvae presented gut alteration with an increase in mucus production. Furthermore, DSS exposure induced an increase in the inflammatory pathway in the intestine, related to an increase in the Endoplasmic-reticulum (ER) stress genes. PEAOXA exposure at a concentration of 10 mg/L decreased the DSS-induced gut damage and mucus production, as well as being able to reduce the inflammatory and ER stress-related genes expression. In conclusion, our results demonstrate that the alterations induced by repeated exposure to DSS were counteracted by PEAOXA action that was able to inhibit the increase in inflammation and ER stress involved in the progression of enterocolitis.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping