PUBLICATION

Loss of Ift74 Leads to Slow Photoreceptor Degeneration and Ciliogenesis Defects in Zebrafish

Authors
Zhu, P., Xu, J., Wang, Y., Zhao, C.
ID
ZDB-PUB-210911-10
Date
2021
Source
International Journal of Molecular Sciences   22(17): (Journal)
Registered Authors
Zhao, Chengtian
Keywords
cilia, ift74, opsin transport, photoreceptor degeneration, zebrafish
MeSH Terms
  • Animals
  • Carrier Proteins/metabolism*
  • Cilia/metabolism
  • Cilia/pathology*
  • Photoreceptor Cells, Vertebrate/metabolism
  • Photoreceptor Cells, Vertebrate/pathology*
  • Protein Transport
  • Retinal Degeneration/metabolism
  • Retinal Degeneration/pathology*
  • Zebrafish
  • Zebrafish Proteins/deficiency*
PubMed
34502236 Full text @ Int. J. Mol. Sci.
Abstract
Cilia are microtubule-based structures projecting from the cell surface that perform diverse biological functions. Ciliary defects can cause a wide range of genetic disorders known collectively as ciliopathies. Intraflagellar transport (IFT) proteins are essential for the assembly and maintenance of cilia by transporting proteins along the axoneme. Here, we report a lack of Ift74, a core IFT-B protein, leading to ciliogenesis defects in multiple organs during early zebrafish development. Unlike rapid photoreceptor cell death in other ift-b mutants, the photoreceptors of ift74 mutants exhibited a slow degeneration process. Further experiments demonstrated that the connecting cilia of ift74 mutants were initially formed but failed to maintain, which resulted in slow opsin transport efficiency and eventually led to photoreceptor cell death. We also showed that the large amount of maternal ift74 transcripts deposited in zebrafish eggs account for the main reason of slow photoreceptor degeneration in the mutants. Together, our data suggested Ift74 is critical for ciliogenesis and that Ift proteins play variable roles in different types of cilia during early zebrafish development. To our knowledge, this is the first study to show ift-b mutant that displays slow photoreceptor degeneration in zebrafish.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping