PUBLICATION

Zebrafish Uba1 Degrades IRF3 through K48-Linked Ubiquitination to Inhibit IFN Production

Authors
Chen, D.D., Jiang, J.Y., Lu, L.F., Zhang, C., Zhou, X.Y., Li, Z.C., Zhou, Y., Li, S.
ID
ZDB-PUB-210702-4
Date
2021
Source
Journal of immunology (Baltimore, Md. : 1950)   207(2): 512-522 (Journal)
Registered Authors
Keywords
none
MeSH Terms
  • Animals
  • Antiviral Agents/metabolism
  • Cell Line
  • HEK293 Cells
  • Humans
  • Interferon Regulatory Factor-3/metabolism*
  • Interferon-beta/metabolism*
  • Protein Binding/physiology
  • Proteolysis
  • Signal Transduction/physiology
  • Ubiquitin/immunology
  • Ubiquitination/physiology*
  • Zebrafish/metabolism*
  • Zebrafish Proteins/metabolism*
PubMed
34193603 Full text @ J. Immunol.
Abstract
Fish IFN regulatory factor 3 (IRF3) is a crucial transcription factor in the IFN activation signaling pathway, which leads to IFN production and a positive cycle. Unrestricted IFN expression results in hyperimmune responses and therefore, IFN must be tightly regulated. In the current study, we found that zebrafish Ub-activating enzyme (Uba1) negatively regulated IRF3 via the K-48 ubiquitin proteasome degradation of IRF3. First, ifn expression stimulated by spring viraemia of carp virus infection was blunted by the overexpression of Uba1 and enhanced by Uba1 knockdown. Afterward, we found that Uba1 was localized in the cytoplasm, where it interacted with and degraded IRF3. Functional domains analysis revealed that the C-terminal ubiquitin-fold domain was necessary for IRF3 degradation by Uba1 and the N-terminal DNA-binding domain of IRF3 was indispensable for the degradation by Uba1.The degradation of IRF3 was subsequently impaired by treatment with MG132, a ubiquitin proteasome inhibitor. Further mechanism analysis revealed that Uba1 induced the K48-linked Ub-proteasomal degradation of IRF3. Finally, the antiviral capacity of IRF3 was significantly attenuated by Uba1. Taken together, our study reveals that zebrafish Uba1 interacts with and activates the ubiquitinated degradation of IRF3, providing evidence of the IFN immune balance mechanism in fish.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping