PUBLICATION

Inhibition of TGF-β/Smad3 Signaling Disrupts Cardiomyocyte Cell Cycle Progression and Epithelial-Mesenchymal Transition-Like Response During Ventricle Regeneration

Authors
Peng, Y., Wang, W., Fang, Y., Hu, H., Chang, N., Pang, M., Hu, Y.F., Li, X., Long, H., Xiong, J.W., Zhang, R.
ID
ZDB-PUB-210407-65
Date
2021
Source
Frontiers in cell and developmental biology   9: 632372 (Journal)
Registered Authors
Zhang, Ruilin
Keywords
EMT-like response, Smad3, TGF-β, cell cycle, ventricle regeneration
Datasets
GEO:GSE162820
MeSH Terms
none
PubMed
33816481 Full text @ Front Cell Dev Biol
Abstract
Unlike mammals, zebrafish can regenerate injured hearts even in the adult stage. Cardiac regeneration requires the coordination of cardiomyocyte (CM) proliferation and migration. The TGF-β/Smad3 signaling pathway has been implicated in cardiac regeneration, but the molecular mechanisms by which this pathway regulates CM proliferation and migration have not been fully illustrated. Here, we investigated the function of TGF-β/Smad3 signaling in a zebrafish model of ventricular ablation. Multiple components of this pathway were upregulated/activated after injury. Utilizing a specific inhibitor of Smad3, we detected an increased ratio of unrecovered hearts. Transcriptomic analysis suggested that the TGF-β/Smad3 signaling pathway could affect CM proliferation and migration. Further analysis demonstrated that the CM cell cycle was disrupted and the epithelial-mesenchymal transition (EMT)-like response was impaired, which limited cardiac regeneration. Altogether, our study reveals an important function of TGF-β/Smad3 signaling in CM cell cycle progression and EMT process during zebrafish ventricle regeneration.
Errata / Notes
This article is corrected by ZDB-PUB-220906-244 .
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping