PUBLICATION

Spindle Scaling Is Governed by Cell Boundary Regulation of Microtubule Nucleation

Authors
Rieckhoff, E.M., Berndt, F., Elsner, M., Golfier, S., Decker, F., Ishihara, K., Brugués, J.
ID
ZDB-PUB-201121-11
Date
2020
Source
Current biology : CB   30(24): 4973-4983.e10 (Journal)
Registered Authors
Keywords
Xenopus, hierarchical regulation, microtubule dynamics, microtubule nucleation, mitotic spindle, scaling, spindle size, surface-to-volume ratio, zebrafish
MeSH Terms
  • Animals
  • Cell Membrane/metabolism*
  • Embryo, Nonmammalian
  • Embryonic Development/physiology
  • Intravital Microscopy
  • Microtubules/metabolism*
  • Mitosis/physiology*
  • Spindle Apparatus/metabolism*
  • Xenopus laevis
  • Zebrafish
PubMed
33217321 Full text @ Curr. Biol.
Abstract
Cellular organelles such as the mitotic spindle adjust their size to the dimensions of the cell. It is widely understood that spindle scaling is governed by regulation of microtubule polymerization. Here, we use quantitative microscopy in living zebrafish embryos and Xenopus egg extracts in combination with theory to show that microtubule polymerization dynamics are insufficient to scale spindles and only contribute below a critical cell size. In contrast, microtubule nucleation governs spindle scaling for all cell sizes. We show that this hierarchical regulation arises from the partitioning of a nucleation inhibitor to the cell membrane. Our results reveal that cells differentially regulate microtubule number and length using distinct geometric cues to maintain a functional spindle architecture over a large range of cell sizes.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping