PUBLICATION
            Endoderm-Derived Myeloid-like Metaphocytes in Zebrafish Gill Mediate Soluble Antigen-Induced Immunity
- Authors
- Lin, X., Zhou, Q., Lin, G., Zhao, C., Wen, Z.
- ID
- ZDB-PUB-201008-13
- Date
- 2020
- Source
- Cell Reports 33: 108227 (Journal)
- Registered Authors
- Wen, Zilong
- Keywords
- endoderm, gill, intestine, macrophage, metaphocyte, zebrafish
- Datasets
- GEO:GSE155287
- MeSH Terms
- 
    
        
        
            
                - Zebrafish
- Gills
- Animals
- Endoderm/metabolism*
- Zebrafish Proteins/metabolism*
 
- PubMed
- 33027664 Full text @ Cell Rep.
            Citation
        
        
            Lin, X., Zhou, Q., Lin, G., Zhao, C., Wen, Z. (2020) Endoderm-Derived Myeloid-like Metaphocytes in Zebrafish Gill Mediate Soluble Antigen-Induced Immunity. Cell Reports. 33:108227.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Immune cells in the mucosal barriers of vertebrates are highly heterogeneous in their origin and function. This heterogeneity is further exemplified by the recent discovery of ectoderm-derived immune cells-metaphocytes in zebrafish epidermis. Yet, whether non-hematopoiesis-derived immune cells generally exist in barrier tissues remains obscured. Here, we report the identification and characterization of an endoderm-derived immune cell population in the gill and intestine of zebrafish. Transcriptome analysis reveals that the endoderm-derived immune cells are myeloid-like cells with high similarities to the ectoderm-derived metaphocytes in epidermis. Like metaphocytes in epidermis, the endoderm-derived immune cells are non-phagocytic but professional in external soluble antigen uptake. Depletion of the endoderm-derived immune cells in gill hinder the local immune response to external soluble stimulants. This study demonstrates a general existence of non-hematopoiesis-derived immune cells in zebrafish mucosal barriers and challenges the prevalent view that resident immune cells in mucosal barriers arise exclusively from hematopoiesis.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    