PUBLICATION
            Cadherins regulate nuclear topography and function of developing ocular motor circuitry
- Authors
- Knüfer, A., Diana, G., Walsh, G.S., Clarke, J.D., Guthrie, S.
- ID
- ZDB-PUB-201002-226
- Date
- 2020
- Source
- eLIFE 9: (Journal)
- Registered Authors
- Clarke, Jon, Walsh, Gregory
- Keywords
- developmental biology, neuroscience, zebrafish
- MeSH Terms
- 
    
        
        
            
                - Zebrafish/embryology
- Zebrafish/growth & development
- Cadherins/physiology*
- In Situ Hybridization
- Neural Pathways/embryology
- Neural Pathways/growth & development
- Microscopy, Confocal
- Animals
- Cell Movement
- Eye Movements
- Oculomotor Nerve/embryology
- Oculomotor Nerve/growth & development*
 
- PubMed
- 33001027 Full text @ Elife
            Citation
        
        
            Knüfer, A., Diana, G., Walsh, G.S., Clarke, J.D., Guthrie, S. (2020) Cadherins regulate nuclear topography and function of developing ocular motor circuitry. eLIFE. 9:.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                In the vertebrate central nervous system, groups of functionally-related neurons, including cranial motor neurons of the brainstem, are frequently organised as nuclei. The molecular mechanisms governing the emergence of nuclear topography and circuit function are poorly understood. Here we investigate the role of cadherin-mediated adhesion in the development of zebrafish ocular motor (sub)nuclei. We find that developing ocular motor (sub)nuclei differentially express classical cadherins. Perturbing cadherin function in these neurons results in distinct defects in neuronal positioning, including scattering of dorsal cells and defective contralateral migration of ventral subnuclei. In addition, we show that cadherin-mediated interactions between adjacent subnuclei are critical for subnucleus position. We also find that disrupting cadherin adhesivity in dorsal oculomotor neurons impairs the larval optokinetic reflex, suggesting that neuronal clustering is important for co-ordinating circuit function. Our findings reveal that cadherins regulate distinct aspects of cranial motor neuron positioning and establish subnuclear topography and motor function.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    