PUBLICATION

Zebrafish xenograft model of human lung cancer for studying the function of LINC00152 in cell proliferation and invasion

Authors
Shen, W., Pu, J., Sun, J., Tan, B., Wang, W., Wang, L., Cheng, J., Zuo, Y.
ID
ZDB-PUB-200811-6
Date
2020
Source
Cancer cell international   20: 376 (Journal)
Registered Authors
Keywords
Afatinib, EGFR, LINC00152, Lung cancer, Zebrafish xenograft
MeSH Terms
none
PubMed
32774169 Full text @ Cancer Cell Int.
Abstract
Numerous studies have shown that long noncoding RNAs play important roles in human cancer progression. Although zebrafish xenografts have recently become a novel in vivo model for human cancer research, whether such models can be used to study the function of long noncoding RNAs remains unknown.
In vitro studies validated the roles of LINC00152 in the proliferation and invasion of lung cancer cells. In vivo studies of zebrafish xenografts also confirmed these roles of LINC00152. In vivo confocal imaging was used to more accurately evaluate the function of LINC00152 in cell proliferation and migration. Pharmacological experiments were further performed to study the potential ability of LINC00152 downregulation combined with an EGFR inhibitor to treat tumors in cultured cells and the zebrafish xenograft model.
Silencing of LINC00152 suppressed cell proliferation and invasion in SPCA1 and A549 lung cancer cell lines in vitro. In the zebrafish xenograft model, knockdown of LINC00152 reduced the proliferation and migration of lung cancer cells, as indicated by the two imaging methods at different magnifications. Moreover, the knockdown of LINC00152 enhanced the inhibition effect of afatinib for lung cancer progression in cultured cells and the zebrafish xenograft model.
Our study reveals the oncogenic roles and potential for LINC00152 to be a target for tumor treatment in lung cancer using zebrafish xenograft models, and the findings suggest that this model could be used for functional and application studies of human long noncoding RNAs in tumor biology.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping