PUBLICATION

Mutations in MYLPF Cause a Novel Segmental Amyoplasia that Manifests as Distal Arthrogryposis

Authors
Chong, J.X., Talbot, J.C., Teets, E.M., Previs, S., Martin, B.L., Shively, K.M., Marvin, C.T., Aylsworth, A.S., Saadeh-Haddad, R., Schatz, U.A., Inzana, F., Ben-Omran, T., Almusafri, F., Al-Mulla, M., Buckingham, K.J., Harel, T., Mor-Shaked, H., Radhakrishnan, P., Girisha, K.M., Nayak, S.S., Shukla, A., Dieterich, K., Faure, J., Rendu, J., Capri, Y., Latypova, X., Nickerson, D.A., Warshaw, D.M., Janssen, P.M.L., University of Washington Center for Mendelian Genomics., Amacher, S.L., Bamshad, M.J.
ID
ZDB-PUB-200728-9
Date
2020
Source
American journal of human genetics   107(2): 293-310 (Journal)
Registered Authors
Amacher, Sharon, Talbot, Jared
Keywords
Mendelian disease, amyoplasia, congenital contractures, development, distal arthrogryposis, exome sequencing, myosin, skeletal muscle, zebrafish
MeSH Terms
  • Adolescent
  • Amino Acid Sequence
  • Animals
  • Arthrogryposis/genetics*
  • Child
  • Contracture/genetics
  • Extremities/pathology
  • Female
  • Humans
  • Male
  • Muscle, Skeletal/pathology*
  • Musculoskeletal Abnormalities/genetics*
  • Mutation/genetics*
  • Myosins/genetics
  • Pedigree
  • Young Adult
  • Zebrafish/genetics
PubMed
32707087 Full text @ Am. J. Hum. Genet.
Abstract
We identified ten persons in six consanguineous families with distal arthrogryposis (DA) who had congenital contractures, scoliosis, and short stature. Exome sequencing revealed that each affected person was homozygous for one of two different rare variants (c.470G>T [p.Cys157Phe] or c.469T>C [p.Cys157Arg]) affecting the same residue of myosin light chain, phosphorylatable, fast skeletal muscle (MYLPF). In a seventh family, a c.487G>A (p.Gly163Ser) variant in MYLPF arose de novo in a father, who transmitted it to his son. In an eighth family comprised of seven individuals with dominantly inherited DA, a c.98C>T (p.Ala33Val) variant segregated in all four persons tested. Variants in MYLPF underlie both dominant and recessively inherited DA. Mylpf protein models suggest that the residues associated with dominant DA interact with myosin whereas the residues altered in families with recessive DA only indirectly impair this interaction. Pathological and histological exam of a foot amputated from an affected child revealed complete absence of skeletal muscle (i.e., segmental amyoplasia). To investigate the mechanism for this finding, we generated an animal model for partial MYLPF impairment by knocking out zebrafish mylpfa. The mylpfa mutant had reduced trunk contractile force and complete pectoral fin paralysis, demonstrating that mylpf impairment most severely affects limb movement. mylpfa mutant muscle weakness was most pronounced in an appendicular muscle and was explained by reduced myosin activity and fiber degeneration. Collectively, our findings demonstrate that partial loss of MYLPF function can lead to congenital contractures, likely as a result of degeneration of skeletal muscle in the distal limb.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping