PUBLICATION

Patterning and mechanics of somite boundaries in zebrafish embryos

Authors
Naganathan, S.R., Oates, A.C.
ID
ZDB-PUB-200524-18
Date
2020
Source
Seminars in cell & developmental biology   107: 170-178 (Review)
Registered Authors
Naganathan, Sundar, Oates, Andrew
Keywords
Actomyosin, Adhesion, Extracellular matrix, Mechanochemical coupling, Segmentation clock, Synchronization
MeSH Terms
  • Animals
  • Biological Evolution
  • Body Patterning/genetics
  • Embryo, Nonmammalian/metabolism*
  • Models, Biological
  • Somites/embryology*
  • Zebrafish/embryology*
PubMed
32444288 Full text @ Sem. Cell Dev. Biol.
Abstract
The body axis of vertebrates is subdivided into repetitive compartments called somites, which give rise primarily to the segmented architecture of the musculoskeletal system in the adult body. Somites form in a sequential and rhythmic manner in embryos and a physical boundary separates each somite from the rest of the unsegmented tissue and adjoining somites. Precise positioning of somite boundaries and determination of boundary cell fate in a select group of cells is thought to be driven by gene expression patterns and morphogen gradients. This pre-patterning step is followed by a mechanical process involving actomyosin activation in boundary cells and formation of an extracellular matrix that results in morphological boundary formation. While genes involved in somite boundary formation have been identified, there are many open questions about the underlying pre-patterning dynamics and mechanics and how these processes are coupled to generate a morphological boundary. Here, focusing on segmentation of zebrafish embryos as a model, we review pre-patterning processes critical for boundary formation and how cytoskeletal activity drives tissue separation. Our outlook is that this system holds exciting new avenues for unearthing general principles of boundary formation in developing embryos.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping