PUBLICATION
            Twist3 is required for dedifferentiation during extraocular muscle regeneration in adult zebrafish
- Authors
- Zhao, Y., Louie, K.W., Tingle, C.F., Sha, C., Heisel, C.J., Unsworth, S.P., Kish, P.E., Kahana, A.
- ID
- ZDB-PUB-200423-7
- Date
- 2020
- Source
- PLoS One 15: e0231963 (Journal)
- Registered Authors
- Kahana, Alon, Kish, Phillip
- Keywords
- none
- MeSH Terms
- 
    
        
        
            
                - Zebrafish/growth & development
- Zebrafish/metabolism
- Zebrafish/physiology*
- Cell Dedifferentiation*
- Zebrafish Proteins/deficiency
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism*
- Twist Transcription Factors/metabolism*
- Animals
- Regeneration*
- Gene Knockdown Techniques
- Cell Proliferation
- Oculomotor Muscles/cytology*
- Oculomotor Muscles/physiology*
 
- PubMed
- 32320444 Full text @ PLoS One
            Citation
        
        
            Zhao, Y., Louie, K.W., Tingle, C.F., Sha, C., Heisel, C.J., Unsworth, S.P., Kish, P.E., Kahana, A. (2020) Twist3 is required for dedifferentiation during extraocular muscle regeneration in adult zebrafish. PLoS One. 15:e0231963.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Severely damaged adult zebrafish extraocular muscles (EOMs) regenerate through dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. Members of the Twist family of basic helix-loop-helix transcription factors (TFs) are key regulators of the epithelial-mesenchymal transition (EMT) and are also involved in craniofacial development in humans and animal models. During zebrafish embryogenesis, twist family members (twist1a, twist1b, twist2, and twist3) function to regulate craniofacial skeletal development. Because of their roles as master regulators of stem cell biology, we hypothesized that twist TFs regulate adult EOM repair and regeneration. In this study, utilizing an adult zebrafish EOM regeneration model, we demonstrate that inhibiting twist3 function using translation-blocking morpholino oligonucleotides (MOs) impairs muscle regeneration by reducing myocyte dedifferentiation and proliferation in the regenerating muscle. This supports our hypothesis that twist TFs are involved in the early steps of dedifferentiation and highlights the importance of twist3 during EOM regeneration.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    