PUBLICATION

Autophagy Activation in Zebrafish Heart Regeneration

Authors
Chávez, M.N., Morales, R.A., López-Crisosto, C., Roa, J.C., Allende, M.L., Lavandero, S.
ID
ZDB-PUB-200212-7
Date
2020
Source
Scientific Reports   10: 2191 (Journal)
Registered Authors
Allende, Miguel L.
Keywords
none
MeSH Terms
  • Heart/physiology*
  • Autophagy/physiology*
  • Regeneration/physiology*
  • Heart Ventricles/metabolism
  • Cell Proliferation/physiology
  • Zebrafish/metabolism
  • Myocytes, Cardiac/metabolism
  • Animals
  • Zebrafish Proteins/metabolism
  • Myocardium/pathology
(all 10)
PubMed
32042056 Full text @ Sci. Rep.
Abstract
Autophagy is an evolutionarily conserved process that plays a key role in the maintenance of overall cellular health. While it has been suggested that autophagy may elicit cardioprotective and pro-survival modulating functions, excessive activation of autophagy can also be detrimental. In this regard, the zebrafish is considered a hallmark model for vertebrate regeneration, since contrary to adult mammals, it is able to faithfully regenerate cardiac tissue. Interestingly, the role that autophagy may play in zebrafish heart regeneration has not been studied yet. In the present work, we hypothesize that, in the context of a well-established injury model of ventricular apex resection, autophagy plays a critical role during cardiac regeneration and its regulation can directly affect the zebrafish regenerative potential. We studied the autophagy events occurring upon injury using electron microscopy, in vivo tracking of autophagy markers, and protein analysis. Additionally, using pharmacological tools, we investigated how rapamycin, an inducer of autophagy, affects regeneration relevant processes. Our results show that a tightly regulated autophagic response is triggered upon injury and during the early stages of the regeneration process. Furthermore, treatment with rapamycin caused an impairment in the cardiac regeneration outcome. These findings are reminiscent of the pathophysiological description of an injured human heart and hence put forward the zebrafish as a model to study the poorly understood double-sword effect that autophagy has in cardiac homeostasis.
Genes / Markers
Figures
Figure Gallery (5 images)
Show all Figures
Expression
Phenotype
No data available
Mutations / Transgenics
Allele Construct Type Affected Genomic Region
f1TgTransgenic Insertion
    i114TgTransgenic Insertion
      udc2TgTransgenic Insertion
        y1TgTransgenic Insertion
          1 - 4 of 4
          Show
          Human Disease / Model
          No data available
          Sequence Targeting Reagents
          No data available
          Fish
          No data available
          Antibodies
          Orthology
          No data available
          Engineered Foreign Genes
          Marker Marker Type Name
          EGFPEFGEGFP
          GFPEFGGFP
          mRFPEFGmRFP
          1 - 3 of 3
          Show
          Mapping
          No data available