PUBLICATION
Wnt10b Participates in Regulating Fatty Acid Synthesis in the Muscle of Zebrafish
- Authors
- Liu, D., Pang, Q., Han, Q., Shi, Q., Zhang, Q., Yu, H.
- ID
- ZDB-PUB-190905-1
- Date
- 2019
- Source
- Cells 8(9): (Journal)
- Registered Authors
- Keywords
- GSK-3?, Wnt10b, lipid deposition, zebrafish, ?-catenin
- MeSH Terms
-
- Wnt Proteins/genetics
- Wnt Proteins/physiology*
- Zebrafish/genetics
- Zebrafish/metabolism*
- Zebrafish Proteins/genetics
- Zebrafish Proteins/physiology*
- Animals
- beta Catenin/metabolism
- Muscles/metabolism*
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- Fatty Acids/metabolism*
- PPAR gamma/metabolism
- Wnt Signaling Pathway/physiology*
- PubMed
- 31480347 Full text @ Cells
Citation
Liu, D., Pang, Q., Han, Q., Shi, Q., Zhang, Q., Yu, H. (2019) Wnt10b Participates in Regulating Fatty Acid Synthesis in the Muscle of Zebrafish. Cells. 8(9).
Abstract
There are 19 Wnt genes in mammals that belong to 12 subfamilies. Wnt signaling pathways participate in regulating numerous homeostatic and developmental processes in animals. However, the function of Wnt10b in fatty acid synthesis remains unclear in fish species. In the present study, we uncovered the role of the Wnt10b signaling pathway in the regulation of fatty acid synthesis in the muscle of zebrafish. The gene of Wnt10b was overexpressed in the muscle of zebrafish using pEGFP-N1-Wnt10b vector injection, which significantly decreased the expression of glycogen synthase kinase 3β (GSK-3β), but increased the expression of β-catenin, peroxisome proliferators-activated receptor γ (PPARγ), and CCAAT/enhancer binding protein α (C/EBPα). Moreover, the activity and mRNA expression of key lipogenic enzymes ATP-citrate lyase (ACL), acetyl-CoA carboxylase (ACC) and fatty acid synthetase (FAS), and the content of non-esterified fatty acids (NEFA), total cholesterol (TC), and triglyceride (TG) were also significantly decreased. Furthermore, interference of the Wnt10b gene significantly inhibited the expression of β-catenin, PPARγ, and C/EBPα, but significantly induced the expression of GSK-3β, FAS, ACC, and ACL. The content of NEFA, TC, and TG as well as the activity of FAS, ACC, and ACL significantly increased. Thus, our results showed that Wnt10b participates in regulating fatty acid synthesis via β-catenin, C/EBPα and PPARγ in the muscle of zebrafish.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping