PUBLICATION

Diffraction-limited axial scanning in thick biological tissue with an aberration-correcting adaptive lens

Authors
Philipp, K., Lemke, F., Scholz, S., Wallrabe, U., Wapler, M.C., Koukourakis, N., Czarske, J.W.
ID
ZDB-PUB-190704-3
Date
2019
Source
Scientific Reports   9: 9532 (Journal)
Registered Authors
Keywords
none
MeSH Terms
none
PubMed
31267005 Full text @ Sci. Rep.
Abstract
Diffraction-limited deep focusing into biological tissue is challenging due to aberrations that lead to a broadening of the focal spot. The diffraction limit can be restored by employing aberration correction for example with a deformable mirror. However, this results in a bulky setup due to the required beam folding. We propose a bi-actuator adaptive lens that simultaneously enables axial scanning and the correction of specimen-induced spherical aberrations with a compact setup. Using the bi-actuator lens in a confocal microscope, we show diffraction-limited axial scanning up to 340 μm deep inside a phantom specimen. The application of this technique to in vivo measurements of zebrafish embryos with reporter-gene-driven fluorescence in a thyroid gland reveals substructures of the thyroid follicles, indicating that the bi-actuator adaptive lens is a meaningful supplement to the existing adaptive optics toolset.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping