PUBLICATION

RNA sequencing of isolated cell populations expressing human APOL1 G2 risk variant reveals molecular correlates of sickle cell nephropathy in zebrafish podocytes

Authors
Bundy, J.L., Anderson, B.R., Francescatto, L., Garrett, M.E., Soldano, K.L., Telen, M.J., Davis, E.E., Ashley-Koch, A.E.
ID
ZDB-PUB-190604-19
Date
2019
Source
PLoS One   14: e0217042 (Journal)
Registered Authors
Davis, Erica, Francescatto, Ludmila
Keywords
none
Datasets
GEO:GSE118000
MeSH Terms
  • Anemia, Sickle Cell/pathology*
  • Animals
  • Apolipoprotein L1/genetics*
  • Gene Expression
  • Genetic Predisposition to Disease/genetics
  • Genetic Variation*
  • Humans
  • Kidney Diseases/pathology*
  • Larva/genetics
  • Podocytes/metabolism
  • Podocytes/pathology*
  • RNA, Messenger/genetics
  • Risk
  • Sequence Analysis, RNA*
  • Transcription, Genetic
  • Zebrafish*
PubMed
31158233 Full text @ PLoS One
Abstract
Kidney failure occurs in 5-13% of individuals with sickle cell disease and is associated with early mortality. Two APOL1 alleles (G1 and G2) have been identified as risk factors for sickle cell disease nephropathy. Both risk alleles are prevalent in individuals with recent African ancestry and have been associated with nephropathic complications in other diseases. Despite the association of G1 and G2 with kidney dysfunction, the mechanisms by which these variants contribute to increased risk remain poorly understood. Previous work in zebrafish models suggest that the G2 risk allele functions as a dominant negative, whereas the G1 allele is a functional null. To understand better the cellular pathology attributed to APOL1 G2, we investigated the in vivo effects of the G2 risk variant on distinct cell types using RNA sequencing. We surveyed APOL1 G2 associated transcriptomic alterations in podocytes and vascular endothelial cells isolated from zebrafish larvae expressing cell-type specific reporters. Our analysis identified many transcripts (n = 7,523) showing differential expression between APOL1 G0 (human wild-type) and APOL1 G2 exposed podocytes. Conversely, relatively few transcripts (n = 107) were differentially expressed when comparing APOL1 G0 and APOL1 G2 exposed endothelial cells. Pathway analysis of differentially expressed transcripts in podocytes showed enrichment for autophagy associated terms such as "Lysosome" and "Phagosome", implicating these pathways in APOL1 G2 associated kidney dysfunction. This work provides insight into the molecular pathology of APOL1 G2 nephropathy which may offer new therapeutic strategies for multiple disease contexts such as sickle cell nephropathy.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping