ZFIN ID: ZDB-PUB-190409-9
Local heat-shock mediated multi-color labeling visualizing behaviors of enteric neural crest cells associated with division and neurogenesis in zebrafish gut
Kuwata, M., Nikaido, M., Hatta, K.
Date: 2019
Source: Developmental dynamics : an official publication of the American Association of Anatomists   248(6): 437-448 (Journal)
Registered Authors: Hatta, Kohei, Nikaido, Masataka
Keywords: Zebrabow, cre recombination, enteric nervous system, live imaging, neural differentiation
MeSH Terms:
  • Animals
  • Cell Division
  • Cell Movement
  • Embryo, Nonmammalian
  • Enteric Nervous System/cytology
  • Enteric Nervous System/embryology
  • Enteric Nervous System/growth & development*
  • Gastrointestinal Tract
  • Heat-Shock Response
  • Neural Crest/cytology*
  • Neurogenesis*
  • Neurons/cytology
  • Time-Lapse Imaging/methods*
  • Zebrafish/anatomy & histology*
  • Zebrafish/embryology
PubMed: 30958591 Full text @ Dev. Dyn.
The enteric nervous system (ENS) is derived from enteric neural crest cells (ENCCs) that migrate into the gut. The zebrafish larva is a good model to study ENCC development due to its simplicity and transparency. However, little is known how individual ENCCs divide and become neurons.
Here, by applying our new method of local heat-shock mediated Cre-recombination around the dorsal vagal area of zebrafish embryos we produced multicolored clones of ENCCs, and performed in vivo time-lapse imaging from ca. 3.5 to 4 days post-fertilization after arrival of ENCCs in the gut. Individual ENCCs migrated in various directions and were highly intermingled. The cell divisions were not restricted to a specific position in the gut. Antibody staining after imaging with anti-HuC/D and anti-Sox10 showed that an ENCC produced two neurons, or formed a neuron and an additional ENCC that further divided. At division, the daughter cells immediately separated. Afterwards, some made soma-soma contact with other ENCCs.
We introduced a new method of visualizing individual ENCCs in the zebrafish gut, describing their behaviors associated with cell division, providing a foundation to study the mechanism of proliferation and neurogenesis in the ENS in vertebrates. This article is protected by copyright. All rights reserved.