PUBLICATION
γ-Tubulin small complex formation is essential for early zebrafish embryogenesis
- Authors
- Pouchucq, L., Undurraga, C.A., Fuentes, R., Cornejo, M., Allende, M.L., Monasterio, O.
- ID
- ZDB-PUB-181115-8
- Date
- 2018
- Source
- Mechanisms of Development 154: 145-152 (Journal)
- Registered Authors
- Allende, Miguel L., Undurraga, Cristian
- Keywords
- Cytoskeleton, Microtubules nucleation, Morpholino, qPCR, γ-TuRC, γ-TuSC
- MeSH Terms
-
- Animals
- Apoptosis/physiology
- Cell Cycle/physiology
- Cell Nucleus/metabolism
- Cell Proliferation/physiology
- Cytoplasm/metabolism
- Embryonic Development/physiology*
- Microtubule-Associated Proteins/metabolism
- Spindle Apparatus/metabolism
- Tubulin/metabolism*
- Zebrafish/embryology*
- Zebrafish/metabolism*
- PubMed
- 30426927 Full text @ Mech. Dev.
Citation
Pouchucq, L., Undurraga, C.A., Fuentes, R., Cornejo, M., Allende, M.L., Monasterio, O. (2018) γ-Tubulin small complex formation is essential for early zebrafish embryogenesis. Mechanisms of Development. 154:145-152.
Abstract
The centrosomal protein γ-tubulin is part of the cytoplasmic γ-tubulin small (γ-TuSCs) and large complexes (γ-TuRCs). Both, molecular and cellular evidence indicate that γ-tubulin plays a central role in microtubule nucleation and mitotic spindle formation. However, the molecular mechanisms of complex formation and subsequent biological roles in animal development remain unclear. Here, we used γ-tubulin gene knockdown in the zebrafish early embryo model to gain insights into its activity and cellular contribution during vertebrate embryogenesis. γ-Tubulin loss-of-function impaired γ-TuSC formation, impacting the microtubule nucleation rate in vitro. Moreover, decreased γ-tubulin synthesis caused dramatic defects in nuclear dynamics and cell cycle progression, leading to developmental arrest at the mid-gastrula stage. At the subcellular level, microtubule organization and function were altered, affecting chromosome segregation and triggering cell proliferation arrest and apoptosis. Our results suggest that de novo translated γ-tubulin participates in γ-TuSC formation required for early animal development. Importantly, formation of this complex is essential for both centrosome assembly and function, and cell proliferation. Thus, γ-TuSC integrity appears to be critical for cell cycle progression, and concomitantly, for coordinating the many distinct activities carried out by the early embryo. Our findings identify a novel role for γ-TuSC in the regulation of early vertebrate embryogenesis, providing molecular and biochemical starting points for future in depth studies of γ-tubulin functionality and its specific role in development.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping