PUBLICATION
Functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior presomitic mesoderm in zebrafish
- Authors
- Kinoshita, H., Ohgane, N., Fujino, Y., Yabe, T., Ovara, H., Yokota, D., Izuka, A., Kage, D., Yamasu, K., Takada, S., Kawamura, A.
- ID
- ZDB-PUB-180609-15
- Date
- 2018
- Source
- Mechanisms of Development 152: 21-31 (Journal)
- Registered Authors
- Kawamura, Akinori, Takada, Shinji, Yamasu, Kyo
- Keywords
- none
- MeSH Terms
-
- Animals
- Body Patterning/genetics*
- Embryonic Development/genetics*
- Gene Expression Regulation, Developmental
- Mesoderm/growth & development
- Morpholinos/genetics
- Muscle Development/genetics
- Nuclear Proteins/genetics*
- Somites/growth & development
- T-Box Domain Proteins/genetics*
- Zebrafish/genetics
- Zebrafish/growth & development
- Zebrafish Proteins/genetics*
- PubMed
- 29879477 Full text @ Mech. Dev.
Citation
Kinoshita, H., Ohgane, N., Fujino, Y., Yabe, T., Ovara, H., Yokota, D., Izuka, A., Kage, D., Yamasu, K., Takada, S., Kawamura, A. (2018) Functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior presomitic mesoderm in zebrafish. Mechanisms of Development. 152:21-31.
Abstract
Somites sequentially form with a regular interval by the segmentation from the anterior region of the presomitic mesoderm (PSM). The expression of several genes involved in the somite segmentation is switched off at the transition from the anterior PSM to somites. Zebrafish Ripply1, which down-regulates a T-box transcription factor Tbx6, is required for the suppression of segmentation gene expression. However, the functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior PSM remain elusive. In this study, we generated ripply1 mutants and examined genetic interaction between ripply1/2 and tbx6. Zebrafish ripply1-/- embryos failed to form the somite boundaries as was observed in knockdown embryos. We found that somite segmentation defects in ripply1 mutants were suppressed by heterozygous mutation of tbx6 or partial translational inhibition of tbx6 by antisense morpholino. We further showed that somite boundaries that were recovered in tbx6+/-; ripply1-/- embryos were dependent on the function of ripply2, indicating that relative gene dosage between ripply1/2 and tbx6 plays a critical role in the somite formation. Interestingly, the expression of segmentation genes such mesp as was still not fully suppressed at the anterior PSM of tbx6+/-; ripply1-/- embryos although the somite formation and rostral-caudal polarity of somites were properly established. Furthermore, impaired myogenesis was observed in the segmented somites in tbx6+/-; ripply1-/- embryos. These results revealed that partial suppression of the segmentation gene expression by Ripply is sufficient to establish the rostral-caudal polarity of somites, and that stronger suppression of the segmentation gene expression by Ripply is required for proper myogenesis in zebrafish embryos.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping