PUBLICATION

Chromatin accessibility is associated with CRISPR-Cas9 efficiency in the zebrafish (Danio rerio)

Authors
Uusi-Mäkelä, M.I.E., Barker, H.R., Bäuerlein, C.A., Häkkinen, T., Nykter, M., Rämet, M.
ID
ZDB-PUB-180424-4
Date
2018
Source
PLoS One   13: e0196238 (Journal)
Registered Authors
Keywords
none
MeSH Terms
  • Animals
  • CRISPR-Cas Systems
  • Chromatin/chemistry*
  • Chromatin/genetics
  • Databases, Genetic
  • Embryonic Development
  • Gene Expression
  • Gene Expression Regulation, Developmental
  • RNA, Guide, Kinetoplastida/genetics*
  • Transcriptional Activation
  • Zebrafish/embryology*
  • Zebrafish/genetics
  • Zebrafish Proteins/genetics*
PubMed
29684067 Full text @ PLoS One
Abstract
CRISPR-Cas9 technology is routinely applied for targeted mutagenesis in model organisms and cell lines. Recent studies indicate that the prokaryotic CRISPR-Cas9 system is affected by eukaryotic chromatin structures. Here, we show that the likelihood of successful mutagenesis correlates with transcript levels during early development in zebrafish (Danio rerio) embryos. In an experimental setting, we found that guide RNAs differ in their onset of mutagenesis activity in vivo. Furthermore, some guide RNAs with high in vitro activity possessed poor mutagenesis activity in vivo, suggesting the presence of factors that limit the mutagenesis in vivo. Using open access datasets generated from early developmental stages of the zebrafish, and guide RNAs selected from the CRISPRz database, we provide further evidence for an association between gene expression during early development and the success of CRISPR-Cas9 mutagenesis in zebrafish embryos. In order to further inspect the effect of chromatin on CRISPR-Cas9 mutagenesis, we analysed the relationship of selected chromatin features on CRISPR-Cas9 mutagenesis efficiency using publicly available data from zebrafish embryos. We found a correlation between chromatin openness and the efficiency of CRISPR-Cas9 mutagenesis. These results indicate that CRISPR-Cas9 mutagenesis is influenced by chromatin accessibility in zebrafish embryos.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping