PUBLICATION
            Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration
- Authors
- Missinato, M.A., Saydmohammed, M., Zuppo, D.A., Rao, K.S., Opie, G.W., Kühn, B., Tsang, M.
- ID
- ZDB-PUB-180223-14
- Date
- 2018
- Source
- Development (Cambridge, England) 145(5): (Journal)
- Registered Authors
- Tsang, Michael
- Keywords
- Dusp6, Ras/MAPK signaling, Zebrafish heart regeneration
- Datasets
- GEO:GSE90595
- MeSH Terms
- 
    
        
        
            
                - Signal Transduction/genetics
- Cell Proliferation/genetics
- Zebrafish/physiology*
- Down-Regulation/genetics
- Regeneration/genetics*
- Heart/physiology*
- Myocytes, Cardiac/physiology
- Dual Specificity Phosphatase 6/physiology*
- Proto-Oncogene Proteins p21(ras)/metabolism*
- Zebrafish Proteins/physiology
- MAP Kinase Signaling System/physiology*
- Animals, Genetically Modified
- Animals
 
- PubMed
- 29444893 Full text @ Development
            Citation
        
        
            Missinato, M.A., Saydmohammed, M., Zuppo, D.A., Rao, K.S., Opie, G.W., Kühn, B., Tsang, M. (2018) Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration. Development (Cambridge, England). 145(5).
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Zebrafish regenerate cardiac tissue through proliferation of pre-existing cardiomyocytes and neovascularization. Secreted growth factors such as FGFs, IGF, PDGFs and Neuregulin play essential roles in stimulating cardiomyocyte proliferation. These factors activate the Ras/MAPK pathway, which is tightly controlled by the feedback attenuator Dual specificity phosphatase 6 (Dusp6), an ERK phosphatase. Here, we show that suppressing Dusp6 function enhances cardiac regeneration. Inactivation of Dusp6 by small molecules or by gene inactivation increased cardiomyocyte proliferation, coronary angiogenesis, and reduced fibrosis after ventricular resection. Inhibition of Erbb or PDGF receptor signaling suppressed cardiac regeneration in wild-type zebrafish, but had a milder effect on regeneration in dusp6 mutants. Moreover, in rat primary cardiomyocytes, NRG1-stimulated proliferation can be enhanced upon chemical inhibition of Dusp6 with BCI. Our results suggest that Dusp6 attenuates Ras/MAPK signaling during regeneration and that suppressing Dusp6 can enhance cardiac repair.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    