PUBLICATION
            Brain activity patterns in high-throughput electrophysiology screen predict both drug efficacies and side effects
- Authors
- Eimon, P.M., Ghannad-Rezaie, M., De Rienzo, G., Allalou, A., Wu, Y., Gao, M., Roy, A., Skolnick, J., Yanik, M.F.
- ID
- ZDB-PUB-180118-2
- Date
- 2018
- Source
- Nature communications 9: 219 (Journal)
- Registered Authors
- De Rienzo, Gianluca, Yanik, Mehmet Faith
- Keywords
- none
- MeSH Terms
- 
    
        
        
            
                - Disease Models, Animal
- Electrophysiological Phenomena*
- Epilepsies, Myoclonic/diagnosis
- Epilepsies, Myoclonic/physiopathology
- Brain/physiopathology*
- Larva/drug effects
- Larva/genetics
- Larva/physiology
- Humans
- Zebrafish/genetics
- Zebrafish/physiology*
- Animals
- Electrophysiology/methods
- Psychotropic Drugs/pharmacology*
- Psychotropic Drugs/toxicity
 
- PubMed
- 29335539 Full text @ Nat. Commun.
            Citation
        
        
            Eimon, P.M., Ghannad-Rezaie, M., De Rienzo, G., Allalou, A., Wu, Y., Gao, M., Roy, A., Skolnick, J., Yanik, M.F. (2018) Brain activity patterns in high-throughput electrophysiology screen predict both drug efficacies and side effects. Nature communications. 9:219.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Neurological drugs are often associated with serious side effects, yet drug screens typically focus only on efficacy. We demonstrate a novel paradigm utilizing high-throughput in vivo electrophysiology and brain activity patterns (BAPs). A platform with high sensitivity records local field potentials (LFPs) simultaneously from many zebrafish larvae over extended periods. We show that BAPs from larvae experiencing epileptic seizures or drug-induced side effects have substantially reduced complexity (entropy), similar to reduced LFP complexity observed in Parkinson's disease. To determine whether drugs that enhance BAP complexity produces positive outcomes, we used light pulses to trigger seizures in a model of Dravet syndrome, an intractable genetic epilepsy. The highest-ranked compounds identified by BAP analysis exhibit far greater anti-seizure efficacy and fewer side effects during subsequent in-depth behavioral assessment. This high correlation with behavioral outcomes illustrates the power of brain activity pattern-based screens and identifies novel therapeutic candidates with minimal side effects.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    