PUBLICATION

Embryonic cardiac chamber maturation: Trabeculation, conduction, and cardiomyocyte proliferation.

Authors
Samsa, L.A., Yang, B., Liu, J.
ID
ZDB-PUB-171227-4
Date
2013
Source
American journal of medical genetics. Part C, Seminars in medical genetics   163C(3): 157-68 (Review)
Registered Authors
Liu, Jiandong, Samsa, Leigh Ann
Keywords
BMP, Ephrin, FGF, Left Ventricular Non-Compaction (LVNC), Neuregulin, Notch, Retinoic acid, Semaphorin, cardiac chamber maturation, cardiac trabeculation, cardiomyocyte proliferation, conduction, endothelin, extracellular matrix signaling
MeSH Terms
  • Biomechanical Phenomena
  • Cell Proliferation
  • Fetal Heart/embryology*
  • Fetal Heart/metabolism
  • Heart Conduction System/embryology
  • Heart Conduction System/physiology
  • Heart Defects, Congenital/embryology*
  • Heart Defects, Congenital/metabolism
  • Humans
  • Myocytes, Cardiac/metabolism
  • Myocytes, Cardiac/pathology
  • Signal Transduction*
PubMed
23720419 Full text @ Am J Med Genet C Semin Med Genet
Abstract

Congenital heart diseases are some of the most common human birth defects. Though some congenital heart defects can be surgically corrected, treatment options for other congenital heart diseases are very limited. In many congenital heart diseases, genetic defects lead to impaired embryonic heart development or growth. One of the key development processes in cardiac development is chamber maturation, and alterations in this maturation process can manifest as a variety of congenital defects including non-compaction, systolic dysfunction, diastolic dysfunction, and arrhythmia. During development, to meet the increasing metabolic demands of the developing embryo, the myocardial wall undergoes extensive remodeling characterized by the formation of muscular luminal protrusions called cardiac trabeculae, increased cardiomyocyte mass, and development of the ventricular conduction system. Though the basic morphological and cytological changes involved in early heart development are clear, much remains unknown about the complex biomolecular mechanisms governing chamber maturation. In this review, we highlight evidence suggesting that a wide variety of basic signaling pathways and biomechanical forces are involved in cardiac wall maturation.

Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping