PUBLICATION

In vivo quantification of mechanical properties of caudal fins in adult zebrafish.

Authors
Puri, S., Aegerter-Wilmsen, T., Jaźwińska, A., Aegerter, C.M.
ID
ZDB-PUB-171219-5
Date
2017
Source
The Journal of experimental biology   221(Pt 4): (Journal)
Registered Authors
Jazwinska, Anna
Keywords
Caudal fin, Experimental biophysics, Hydrodynamics, Locomotion, Stiffness, Zebrafish
MeSH Terms
  • Animal Fins/physiology*
  • Animals
  • Biomechanical Phenomena
  • Hydrodynamics
  • Physiology/methods*
  • Swimming/physiology*
  • Zebrafish/physiology*
PubMed
29246971 Full text @ J. Exp. Biol.
Abstract
The caudal fins of adult zebrafish are supported by multiple bony rays that are laterally interconnected by soft interray tissue. Little is known about the fin's mechanical properties that influence bending in response to hydrodynamic forces during swimming. Here, we developed an experimental setup to measure the elastic properties of caudal fins in vivo by applying micro-Newton forces to obtain bending stiffness and a tensional modulus. We detected overall bending moments of 1.5×10-9-4×10-9 N m2 along the proximal-distal axis of the appendage showing a non-monotonous pattern that was not due to the geometry of the fin itself. Surgical disruption of the interray tissues along the proximal-distal axis revealed no significant changes to the overall bending stiffness, which we confirmed by determining a tensional modulus of the interray tissue. Thus, the biophysical values suggest that the flexibility of the fin during its hydrodynamic performance predominantly relies on the mechanical properties of the rays.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping