ZFIN ID: ZDB-PUB-171209-5
Zebrafish skeleton development: High resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification
Silvent, J., Akiva, A., Brumfeld, V., Reznikov, N., Rechav, K., Yaniv, K., Addadi, L., Weiner, S.
Date: 2017
Source: PLoS One   12: e0177731 (Journal)
Registered Authors: Yaniv, Karina
Keywords: none
MeSH Terms:
  • Animals
  • Bone Development*
  • Calcium/metabolism
  • Microscopy, Electron, Scanning/methods*
  • X-Ray Microtomography/methods*
  • Zebrafish/embryology*
PubMed: 29220379 Full text @ PLoS One
Although bone is one of the most studied living materials, many questions about the manner in which bones form remain unresolved, including fine details of the skeletal structure during development. In this study, we monitored skeleton development of zebrafish larvae, using calcein fluorescence, high-resolution micro-CT 3D images and FIB-SEM in the block surface serial imaging mode. We compared calcein staining of the skeletons of the wild type and nacre mutants, which are transparent zebrafish, with micro-CT for the first 30 days post fertilization embryos, and identified significant differences. We quantified the bone volumes and mineral contents of bones, including otoliths, during development, and showed that such developmental differences, including otolith development, could be helpful in identifying phenotypes. In addition, high-resolution imaging revealed the presence of mineralized aggregates in the notochord, before the formation of the first bone in the axial skeleton. These structures might play a role in the storage of the mineral. Our results highlight the potential of these high-resolution 3D approaches to characterize the zebrafish skeleton, which in turn could prove invaluable information for better understanding the development and the characterization of skeletal phenotypes.