PUBLICATION
            Coordinated Expression of Two Types of Low-Threshold K+ Channels Establishes Unique Single Spiking of Mauthner Cells among Segmentally Homologous Neurons in the Zebrafish Hindbrain.
- Authors
 - Watanabe, T., Shimazaki, T., Oda, Y.
 - ID
 - ZDB-PUB-171101-5
 - Date
 - 2017
 - Source
 - eNeuro 4(5): (Journal)
 - Registered Authors
 - Oda, Yoichi
 - Keywords
 - Kv1.1, Kv7.4, Kvβ2, Mauthner cell, phasic firing, simulation
 - MeSH Terms
 - 
    
        
        
            
                
- Cations, Monovalent/metabolism
 - Computer Simulation
 - Xenopus laevis
 - Patch-Clamp Techniques
 - Potassium Channels/metabolism*
 - Potassium/metabolism
 - Animals, Genetically Modified
 - Action Potentials/drug effects
 - Action Potentials/physiology*
 - Models, Neurological
 - Neurons/cytology*
 - Neurons/drug effects
 - Neurons/metabolism*
 - Animals
 - Oocytes
 - Zebrafish
 - In Situ Hybridization
 - Cochlea/cytology
 - Cochlea/metabolism
 - Rhombencephalon/cytology*
 - Rhombencephalon/drug effects
 - Rhombencephalon/metabolism*
 - Larva
 - Sodium/metabolism
 - Potassium Channel Blockers/pharmacology
 
 - PubMed
 - 29085904 Full text @ eNeuro
 
            Citation
        
        
            Watanabe, T., Shimazaki, T., Oda, Y. (2017) Coordinated Expression of Two Types of Low-Threshold K+ Channels Establishes Unique Single Spiking of Mauthner Cells among Segmentally Homologous Neurons in the Zebrafish Hindbrain.. eNeuro. 4(5).
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Expression of different ion channels permits homologously-generated neurons to acquire different types of excitability and thus code various kinds of input information. Mauthner (M) series neurons in the teleost hindbrain consist of M cells and their morphological homologs, which are repeated in adjacent segments and share auditory inputs. When excited, M cells generate a single spike at the onset of abrupt stimuli, while their homologs encode input intensity with firing frequency. Our previous study in zebrafish showed that immature M cells burst phasically at 2 d postfertilization (dpf) and acquire single spiking at 4 dpf by specific expression of auxiliary Kvβ2 subunits in M cells in association with common expression of Kv1.1 channels in the M series. Here, we further reveal the ionic mechanisms underlying this functional differentiation. Pharmacological blocking of Kv7/KCNQ in addition to Kv1 altered mature M cells to fire tonically, similar to the homologs. In contrast, blocking either channel alone caused M cells to burst phasically. M cells at 2 dpf fired tonically after blocking Kv7. In situ hybridization revealed specific Kv7.4/KCNQ4 expression in M cells at 2 dpf. Kv7.4 and Kv1.1 channels expressed in Xenopus oocytes exhibited low-threshold outward currents with slow and fast rise times, while coexpression of Kvβ2 accelerated and increased Kv1.1 currents, respectively. Computational models, modified from a mouse cochlear neuron model, demonstrated that Kv7.4 channels suppress repetitive firing to produce spike-frequency adaptation, while Kvβ2-associated Kv1.1 channels increase firing threshold and decrease the onset latency of spiking. Altogether, coordinated expression of these low-threshold K+ channels with Kvβ2 functionally differentiates M cells among homologous neurons.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping