PUBLICATION
Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels
- Authors
- Armant, O., Gombeau, K., Murat El Houdigui, S., Floriani, M., Camilleri, V., Cavalie, I., Adam-Guillermin, C.
- ID
- ZDB-PUB-170523-2
- Date
- 2017
- Source
- PLoS One 12: e0177932 (Journal)
- Registered Authors
- Armant, Olivier
- Keywords
- Larvae, Zebrafish, Gene expression, Cell adhesion, Transcriptome analysis, Ovaries, Uranium, Embryos
- Datasets
- GEO:GSE96603
- MeSH Terms
-
- Animals
- Brain/drug effects
- Brain/embryology
- Female
- Gene Expression Profiling/methods*
- Gene Expression Regulation, Developmental/drug effects
- Male
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/embryology
- Muscle, Skeletal/ultrastructure
- Ovary/drug effects
- Ovary/embryology
- Sequence Analysis, RNA/methods*
- Testis/drug effects
- Testis/embryology
- Uranium/toxicity*
- Water Pollutants, Radioactive/toxicity
- Zebrafish/embryology
- Zebrafish/genetics*
- Zebrafish Proteins/genetics*
- PubMed
- 28531178 Full text @ PLoS One
Citation
Armant, O., Gombeau, K., Murat El Houdigui, S., Floriani, M., Camilleri, V., Cavalie, I., Adam-Guillermin, C. (2017) Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels. PLoS One. 12:e0177932.
Abstract
Uranium is an actinide naturally found in the environment. Anthropogenic activities lead to the release of increasing amounts of uranium and depleted uranium (DU) in the environment, posing potential risks to aquatic organisms due to radiological and chemical toxicity of this radionucleide. Although environmental contaminations with high levels of uranium have already been observed, chronic exposures of non-human species to levels close to the environmental quality standards remain scarcely characterized. The present study focused on the identification of the molecular pathways impacted by a chronic exposure of zebrafish to 20 μg/L of DU during 10 days. The transcriptomic effects were evaluated by the use of the mRNAseq analysis in three organs of adult zebrafish, the brain the testis and the ovaries, and two developmental stages of the adult fish progeny, two-cells embryo and four-days larvae. The results highlight generic effects on the cell adhesion process, but also specific transcriptomic responses depending on the organ or the developmental stage investigated. The analysis of the transgenerational effects of DU-exposure on the four-day zebrafish larvae demonstrate an induction of genes involved in oxidative response (cat, mpx, sod1 and sod2), a decrease of expression of the two hatching enzymes (he1a and he1b), the deregulation of the expression of gene coding for the ATPase complex and the induction of cellular stress. Electron microscopy analysis of skeletal muscles on the four-days larvae highlights significant histological impacts on the ultrastructure of both the mitochondria and the myofibres. In addition, the comparison with the transcriptomic data obtained for the acetylcholine esterase mutant reveals the induction of protein-chaperons in the skeletal muscles of the progeny of fish chronically exposed to DU, pointing towards long lasting effects of this chemical in the muscles. The results presented in this study support the hypothesis that a chronic parental exposure to an environmentally relevant concentration of DU could impair the progeny development with significant effects observed both at the molecular level and on the histological ultrastructure of organs. This study provides a comprehensive transcriptomic dataset useful for ecotoxicological studies on other fish species at the molecular level. It also provides a key DU responsive gene, egr1, which may be a candidate biomarker for monitoring aquatic pollution by heavy metals.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping