PUBLICATION
            Automated deep-phenotyping of the vertebrate brain
- Authors
- Allalou, A., Wu, Y., Ghannad-Rezaie, M., Eimon, P.M., Yanik, M.F.
- ID
- ZDB-PUB-170414-4
- Date
- 2017
- Source
- eLIFE 6: (Journal)
- Registered Authors
- Yanik, Mehmet Faith
- Keywords
- developmental biology, neuroscience, stem cells, zebrafish
- MeSH Terms
- 
    
        
        
            
                - Gene Expression Profiling/methods*
- Zebrafish/genetics
- Zebrafish/physiology*
- Phenotype*
- Brain/diagnostic imaging
- Brain/physiology*
- Animals
- Automation, Laboratory/methods
- Tomography/methods*
- Mutation
- Brain Mapping/methods*
 
- PubMed
- 28406399 Full text @ Elife
            Citation
        
        
            Allalou, A., Wu, Y., Ghannad-Rezaie, M., Eimon, P.M., Yanik, M.F. (2017) Automated deep-phenotyping of the vertebrate brain. eLIFE. 6.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Here, we describe an automated platform suitable for large-scale deep-phenotyping of zebrafish mutant lines, which uses optical projection tomography to rapidly image brain-specific gene expression patterns in 3D at cellular resolution. Registration algorithms and correlation analysis are then used to compare 3D expression patterns, to automatically detect all statistically significant alterations in mutants, and to map them onto a brain atlas. Automated deep-phenotyping of a mutation in the master transcriptional regulator fezf2 not only detects all known phenotypes but also uncovers important novel neural deficits that were overlooked in previous studies. In the telencephalon, we show for the first time that fezf2 mutant zebrafish have significant patterning deficits, particularly in glutamatergic populations. Our findings reveal unexpected parallels between fezf2 function in zebrafish and mice, where mutations cause deficits in glutamatergic neurons of the telencephalon-derived neocortex.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    