PUBLICATION
            Cholesterol transport through lysosome-peroxisome membrane contacts
- Authors
- Chu, B.B., Liao, Y.C., Qi, W., Xie, C., Du, X., Wang, J., Yang, H., Miao, H.H., Li, B.L., Song, B.L.
- ID
- ZDB-PUB-170214-198
- Date
- 2015
- Source
- Cell 161: 291-306 (Journal)
- Registered Authors
- Keywords
- none
- MeSH Terms
- 
    
        
        
            
                - Adrenoleukodystrophy/metabolism
- Animals
- Zebrafish
- Biological Transport
- Humans
- Genome-Wide Association Study
- Lysosomes/metabolism*
- Cholesterol/metabolism*
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Peroxisomal Disorders/metabolism
- Peroxisomal Disorders/pathology
- RNA, Small Interfering/metabolism*
- Amphotericin B/pharmacology
- Synaptotagmins/metabolism
- Mice
- Peroxisomes/metabolism*
- ATP-Binding Cassette Transporters/metabolism
 
- PubMed
- 25860611 Full text @ Cell
            Citation
        
        
            Chu, B.B., Liao, Y.C., Qi, W., Xie, C., Du, X., Wang, J., Yang, H., Miao, H.H., Li, B.L., Song, B.L. (2015) Cholesterol transport through lysosome-peroxisome membrane contacts. Cell. 161:291-306.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Cholesterol is dynamically transported among organelles, which is essential for multiple cellular functions. However, the mechanism underlying intracellular cholesterol transport has remained largely unknown. We established an amphotericin B-based assay enabling a genome-wide shRNA screen for delayed LDL-cholesterol transport and identified 341 hits with particular enrichment of peroxisome genes, suggesting a previously unappreciated pathway for cholesterol transport. We show dynamic membrane contacts between peroxisome and lysosome, which are mediated by lysosomal Synaptotagmin VII binding to the lipid PI(4,5)P2 on peroxisomal membrane. LDL-cholesterol enhances such contacts, and cholesterol is transported from lysosome to peroxisome. Disruption of critical peroxisome genes leads to cholesterol accumulation in lysosome. Together, these findings reveal an unexpected role of peroxisome in intracellular cholesterol transport. We further demonstrate massive cholesterol accumulation in human patient cells and mouse model of peroxisomal disorders, suggesting a contribution of abnormal cholesterol accumulation to these diseases.
            
    
        
        
    
    
    
                
                    
                        Errata / Notes
                    
                    
                
                
            
        
        
    
        
            
            This article is corrected by ZDB-PUB-220906-231 .
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    