PUBLICATION

Quantum Dot Interactions and Flow Effects in Angiogenic Zebrafish (Danio rerio) Vessels and Human Endothelial Cells

Authors
Jiang, X.Y., Sarsons, C.D., Gomez-Garcia, M.J., Cramb, D.T., Rinker, K.D., Childs, S.J.
ID
ZDB-PUB-161221-9
Date
2017
Source
Nanomedicine : nanotechnology, biology, and medicine   13(3): 999-1010 (Journal)
Registered Authors
Childs, Sarah J.
Keywords
angiogenesis, nanoparticle, quantum dots, shear stress, uptake, zebrafish
MeSH Terms
  • Acrylic Resins/administration & dosage
  • Acrylic Resins/metabolism
  • Acrylic Resins/toxicity
  • Amination
  • Animals
  • Blood Flow Velocity
  • Blood Vessels/drug effects
  • Blood Vessels/physiology*
  • Carboxylic Acids/administration & dosage
  • Carboxylic Acids/metabolism
  • Carboxylic Acids/toxicity
  • Cell Survival/drug effects
  • Endothelial Cells/cytology
  • Endothelial Cells/drug effects
  • Endothelial Cells/metabolism*
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • Polyethylene Glycols/administration & dosage
  • Polyethylene Glycols/metabolism
  • Polyethylene Glycols/toxicity
  • Quantum Dots/administration & dosage
  • Quantum Dots/metabolism*
  • Quantum Dots/toxicity
  • Zebrafish
PubMed
27993727 Full text @ Nanomedicine
Abstract
Nanoparticle (NPs) interactions with biological tissues are affected by the size, shape and surface chemistry of the NPs. Here we use in vivo (zebrafish) and in vitro (HUVEC) models to investigate association of quantum dots (QDs) with endothelial cells and the effect of fluid flow. After injection into the developing zebrafish, circulating QDs associate with endothelium and penetrate surrounding tissue parenchyma over time. Amino-functionalized QDs cluster, interact with cells, and clear more rapidly than carboxy-functionalized QDs in vivo, highlighting charge influences. QDs show stronger accumulation in slow-flowing, small caliber venous vessels than in fast-flowing high caliber arterial vessels. Parallel-plate flow experiments with human umbilical vein endothelial cells support these findings, showing reduced QD-EC association with increasing flow. In vivo, flow arrest after nanoparticle injection still results in venous accumulation at 18 hrs. Overall our results suggest that both QD charge and blood flow modulate particle-endothelial cell interactions.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping