PUBLICATION

Artemisinins Target GABAA Receptor Signaling and Impair α Cell Identity.

Authors
Li, J., Casteels, T., Frogne, T., Ingvorsen, C., Honoré, C., Courtney, M., Huber, K.V., Schmitner, N., Kimmel, R.A., Romanov, R.A., Sturtzel, C., Lardeau, C.H., Klughammer, J., Farlik, M., Sdelci, S., Vieira, A., Avolio, F., Briand, F., Baburin, I., Májek, P., Pauler, F.M., Penz, T., Stukalov, A., Gridling, M., Parapatics, K., Barbieux, C., Berishvili, E., Spittler, A., Colinge, J., Bennett, K.L., Hering, S., Sulpice, T., Bock, C., Distel, M., Harkany, T., Meyer, D., Superti-Furga, G., Collombat, P., Hecksher-Sřrensen, J., Kubicek, S.
ID
ZDB-PUB-161206-9
Date
2017
Source
Cell   168(1-2): 86-100.e15 (Journal)
Registered Authors
Distel, Martin, Kimmel, Robin, Meyer, Dirk, Schmitner, Nicole, Sturtzel, Caterina
Keywords
ARX translocation, GABA-receptor signaling, artemisinins, chemical biology, diabetes, gephyrin, insulin secretion, pancreatic endocrine transdifferentiation, regenerative medicine, ? cell
MeSH Terms
  • gamma-Aminobutyric Acid/metabolism
  • Transcription Factors/metabolism
  • Animals
  • Receptors, GABA-A/metabolism*
  • Cells, Cultured
  • Mice
  • Cell Transdifferentiation/drug effects
  • Single-Cell Analysis
  • Insulin/genetics
  • Insulin/metabolism
  • Signal Transduction*
  • Gene Expression Profiling
  • Artemisinins/administration & dosage
  • Artemisinins/pharmacology*
  • Diabetes Mellitus/drug therapy
  • Rats
  • Humans
  • Diabetes Mellitus, Type 1/drug therapy*
  • Diabetes Mellitus, Type 1/pathology
  • Carrier Proteins/metabolism
  • Membrane Proteins/metabolism
  • Zebrafish
  • Homeodomain Proteins/metabolism
  • Disease Models, Animal*
  • Islets of Langerhans/drug effects
  • Protein Stability/drug effects
PubMed
27916275 Full text @ Cell
Abstract
Type 1 diabetes is characterized by the destruction of pancreatic β cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional β-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic β cell mass from α cells.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping