ZFIN ID: ZDB-PUB-160716-16
5-hydroxymethylcytosine marks post-mitotic neural cells in the adult and developing vertebrate central nervous system
Diotel, N., Mérot, Y., Coumailleau, P., Gueguen, M.M., Sérandour, A.A., Salbert, G., Kah, O.
Date: 2017
Source: The Journal of comparative neurology   525(3): 478-497 (Journal)
Registered Authors: Diotel, Nicolas, Kah, Olivier
Keywords: Key words: 5mC, 5hmC, MeCP2, TET, amphibian, epigenetic, mammals, neurogenesis, teleost
MeSH Terms:
  • 5-Methylcytosine/analogs & derivatives*
  • 5-Methylcytosine/metabolism
  • Animals
  • Animals, Genetically Modified
  • Brain/cytology
  • Brain/growth & development*
  • Brain/metabolism*
  • Dermoscopy
  • Green Fluorescent Proteins/genetics
  • Green Fluorescent Proteins/metabolism
  • Immunohistochemistry
  • In Situ Hybridization
  • Male
  • Mice
  • Microscopy, Confocal
  • Neural Stem Cells/cytology
  • Neural Stem Cells/metabolism
  • Neurogenesis/physiology
  • Neuroglia/cytology
  • Neuroglia/metabolism
  • Neurons/cytology
  • Neurons/metabolism*
  • Olfactory Mucosa/cytology
  • Olfactory Mucosa/growth & development
  • Olfactory Mucosa/metabolism
  • Real-Time Polymerase Chain Reaction
  • Xenopus
  • Zebrafish
PubMed: 27414756 Full text @ J. Comp. Neurol.
ABSTRACT
The epigenetic mark 5-hydroxymethylcytosine (5hmC) is a cytosine modification that is abundant in the central nervous system of mammals and which results from 5-methylcytosine oxidation by TET enzymes. Such a mark is suggested to play key roles in the regulation of chromatin structure and gene expression. However, its precise functions still remain poorly understood and information about its distribution in non-mammalian species is still lacking. Here, the distribution of 5hmC was investigated in the brain of adult zebrafish, African claw frog and mouse in a comparative manner. We show that zebrafish neurons are endowed with high levels of 5hmC whereas quiescent or proliferative neural progenitors show low to undetectable levels of the modified cytosine. In the brain of larval and juvenile xenopus, 5hmC is also detected in neurons while ventricular proliferative cells do not display this epigenetic mark. Similarly, 5hmC is enriched in neurons compared to neural progenitors of the ventricular zone in the mouse developing cortex. Interestingly, 5hmC colocalized with the methylated DNA binding protein MeCP2 and with the active chromatin histone modification H3K4me2 in mouse neurons. Taken together, our results show an evolutionarily conserved cerebral distribution of 5hmC between fish and tetrapods and reinforce the idea that 5hmC fulfills major functions in the control of chromatin activity in vertebrate neurons.
ADDITIONAL INFORMATION