PUBLICATION
            Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish
- Authors
- Fame, R.M., Chang, J.T., Hong, A., Aponte-Santiago, N.A., Sive, H.
- ID
- ZDB-PUB-160623-9
- Date
- 2016
- Source
- Fluids and barriers of the CNS 13: 11 (Journal)
- Registered Authors
- Chang, Jessica, Sive, Hazel
- Keywords
- Brain ventricular system, Cerebrospinal fluid, Fluid dynamics, Zebrafish
- MeSH Terms
- 
    
        
        
            
                - Animals
- Cilia/physiology
- Movement
- Cerebral Ventricles/embryology*
- Cerebral Ventricles/physiology*
- Zebrafish/embryology*
- Zebrafish/physiology*
- Cerebrospinal Fluid/metabolism*
- Heart/embryology
- Heart/physiology
- Microscopy, Confocal
- Troponin T/genetics
- Troponin T/metabolism
- Animals, Genetically Modified
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
- Hydrodynamics
- Rhombencephalon/embryology
- Telencephalon/embryology
- Telencephalon/physiology
- Diencephalon/embryology
- Diencephalon/physiology
 
- PubMed
- 27329482 Full text @ Fluids Barriers CNS
            Citation
        
        
            Fame, R.M., Chang, J.T., Hong, A., Aponte-Santiago, N.A., Sive, H. (2016) Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish. Fluids and barriers of the CNS. 13:11.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
Background Cerebrospinal fluid (CSF) contained within the brain ventricles contacts neuroepithelial progenitor cells during brain development. Dynamic properties of CSF movement may limit locally produced factors to specific regions of the developing brain. However, there is no study of in vivo CSF dynamics between ventricles in the embryonic brain. We address CSF movement using the zebrafish larva, during the major period of developmental neurogenesis.
Methods CSF movement was monitored at two stages of zebrafish development: early larva [pharyngula stage; 27-30 h post-fertilization (hpf)] and late larva (hatching period; 51-54 hpf) using photoactivatable Kaede protein to calculate average maximum CSF velocity between ventricles. Potential roles for heartbeat in early CSF movement were investigated using tnnt2a mutant fish (tnnt2a (-/-)) and chemical [2,3 butanedione monoxime (BDM)] treatment. Cilia motility was monitored at these stages using the Tg(βact:Arl13b-GFP) transgenic fish line.
Results In wild-type early larva there is net CSF movement from the telencephalon to the combined diencephalic/mesencephalic superventricle. This movement directionality reverses at late larval stage. CSF moves directionally from diencephalic to rhombencephalic ventricles at both stages examined, with minimal movement from rhombencephalon to diencephalon. Directional movement is partially dependent on heartbeat, as indicated in assays of tnnt2a (-/-) fish and after BDM treatment. Brain cilia are immotile at the early larval stage.
Conclusion These data demonstrate directional movement of the embryonic CSF in the zebrafish model during the major period of developmental neurogenesis. A key conclusion is that CSF moves preferentially from the diencephalic into the rhombencephalic ventricle. In addition, the direction of CSF movement between telencephalic and diencephalic ventricles reverses between the early and late larval stages. CSF movement is partially dependent on heartbeat. At early larval stage, the absence of motile cilia indicates that cilia likely do not direct CSF movement. These data suggest that CSF components may be compartmentalized and could contribute to specialization of the early brain. In addition, CSF movement may also provide directional mechanical signaling.
            
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    