PUBLICATION
In vivo myosin step-size from zebrafish skeletal muscle
- Authors
- Burghardt, T.P., Ajtai, K., Sun, X., Takubo, N., Wang, Y.
- ID
- ZDB-PUB-160602-1
- Date
- 2016
- Source
- Open Biology 6(5): (Journal)
- Registered Authors
- Burghardt, Thomas P., Sun, Xiaojing
- Keywords
- highly inclined thin illumination, single myosin detection in vivo, strychnine induced contraction, transgenic zebrafish skeletal muscle, zebrafish skeletal myosin powerstroke, zebrafish skeletal myosin step-size
- MeSH Terms
-
- Strychnine/pharmacology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/embryology*
- Muscle, Skeletal/metabolism
- Humans
- Binding Sites
- Animals, Genetically Modified
- Green Fluorescent Proteins/metabolism
- Actins/metabolism
- Zebrafish/embryology
- Zebrafish/genetics*
- Adenosine Triphosphate/metabolism
- Animals
- Myosin Light Chains/chemistry*
- Myosin Light Chains/genetics
- Myosin Light Chains/metabolism*
- PubMed
- 27249818 Full text @ Open Biol.
Citation
Burghardt, T.P., Ajtai, K., Sun, X., Takubo, N., Wang, Y. (2016) In vivo myosin step-size from zebrafish skeletal muscle. Open Biology. 6(5).
Abstract
Muscle myosins transduce ATP free energy into actin displacement to power contraction. In vivo, myosin side chains are modified post-translationally under native conditions, potentially impacting function. Single myosin detection provides the 'bottom-up' myosin characterization probing basic mechanisms without ambiguities inherent to ensemble observation. Macroscopic muscle physiological experimentation provides the definitive 'top-down' phenotype characterizations that are the concerns in translational medicine. In vivo single myosin detection in muscle from zebrafish embryo models for human muscle fulfils ambitions for both bottom-up and top-down experimentation. A photoactivatable green fluorescent protein (GFP)-tagged myosin light chain expressed in transgenic zebrafish skeletal muscle specifically modifies the myosin lever-arm. Strychnine induces the simultaneous contraction of the bilateral tail muscles in a live embryo, causing them to be isometric while active. Highly inclined thin illumination excites the GFP tag of single lever-arms and its super-resolution orientation is measured from an active isometric muscle over a time sequence covering many transduction cycles. Consecutive frame lever-arm angular displacement converts to step-size by its product with the estimated lever-arm length. About 17% of the active myosin steps that fall between 2 and 7 nm are implicated as powerstrokes because they are beyond displacements detected from either relaxed or ATP-depleted (rigor) muscle.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping