PUBLICATION

Quantitative Analysis of Axonal Branch Dynamics in the Developing Nervous System

Authors
Chalmers, K., Kita, E.M., Scott, E.K., Goodhill, G.J.
ID
ZDB-PUB-160322-2
Date
2016
Source
PLoS Computational Biology   12: e1004813 (Journal)
Registered Authors
Scott, Ethan
Keywords
Axons, Death rates, Birth rates, Retinal ganglion cells, Superior colliculus, Zebrafish, Larvae, Markov processes
MeSH Terms
  • Animals
  • Computer Simulation
  • Connectome/methods
  • Image Interpretation, Computer-Assisted
  • Models, Anatomic
  • Models, Neurological*
  • Neurogenesis/physiology*
  • Superior Colliculi/cytology*
  • Superior Colliculi/growth & development*
  • Time-Lapse Imaging/methods
  • Zebrafish/anatomy & histology*
  • Zebrafish/physiology*
PubMed
26998842 Full text @ PLoS Comput. Biol.
Abstract
Branching is an important mechanism by which axons navigate to their targets during neural development. For instance, in the developing zebrafish retinotectal system, selective branching plays a critical role during both initial pathfinding and subsequent arborisation once the target zone has been reached. Here we show how quantitative methods can help extract new information from time-lapse imaging about the nature of the underlying branch dynamics. First, we introduce Dynamic Time Warping to this domain as a method for automatically matching branches between frames, replacing the effort required for manual matching. Second, we model branch dynamics as a birth-death process, i.e. a special case of a continuous-time Markov process. This reveals that the birth rate for branches from zebrafish retinotectal axons, as they navigate across the tectum, increased over time. We observed no significant change in the death rate for branches over this time period. However, blocking neuronal activity with TTX slightly increased the death rate, without a detectable change in the birth rate. Third, we show how the extraction of these rates allows computational simulations of branch dynamics whose statistics closely match the data. Together these results reveal new aspects of the biology of retinotectal pathfinding, and introduce computational techniques which are applicable to the study of axon branching more generally.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping