PUBLICATION

A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish

Authors
Song, L., Vijver, M.G., Peijnenburg, W.J., Galloway, T.S., Tyler, C.R.
ID
ZDB-PUB-150630-1
Date
2015
Source
Chemosphere   139: 181-189 (Journal)
Registered Authors
Tyler, Charles R.
Keywords
Copper, Histology, In vivo, Nanoparticle, Toxicity
MeSH Terms
  • Animals
  • Copper/toxicity*
  • Cyprinidae*
  • Fresh Water
  • Gills/drug effects
  • Gills/pathology
  • Lethal Dose 50
  • Metal Nanoparticles/toxicity*
  • Oncorhynchus mykiss*
  • Temperature
  • Water Pollutants, Chemical/toxicity*
  • Zebrafish*
PubMed
26121603 Full text @ Chemosphere
Abstract
Copper nanoparticles (CuNPs) are used extensively in a wide range of products and the potential for toxicological impacts in the aquatic environment is of high concern. In this study, the fate and the acute toxicity of spherical 50nm copper nanoparticles was assessed in juvenile rainbow trout (Oncorhynchus mykiss), fathead minnow (Pimephales promelas) and zebrafish (Danio rerio) for in vivo aqueous exposures following standardized OECD 203 guideline tests. The fate of the CuNPs in the aqueous media was temperature dependent. At the higher study temperature (26±1°C), there was both an enhanced particle aggregation and higher rate of dissolution compared with that at the lower study temperature (15±1°C). 96h LC50s of the CuNPs were 0.68±0.15, 0.28±0.04 and 0.22±0.08mg Cu/L for rainbow trout, fathead minnow and zebrafish, respectively. The 96h lowest-observed-effect concentration (LOEC) for the CuNPs were 0.17, 0.023 and <0.023mg/L for rainbow trout, fathead minnow, and zebrafish respectively, and are below the predicted environmental concentration of CuNPs for some aquatic environments suggesting a possible ecotoxicological risk to fish. Soluble copper was one of main drivers for the acute toxicity of the copper nanoparticles suspensions. Both CuNPs suspension and copper nitrate caused damage to gill filaments and gill pavement cells, with differences in sensitivity for these effects between the fish species studied. We show therefore common toxicological effects of CuNPs in different fish species but with differences in sensitivity with implications for hazard extrapolation between fish species.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping