PUBLICATION

Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis

Authors
Westcot, S.E., Hatzold, J., Urban, M.D., Richetti, S.K., Skuster, K.J., Harm, R.M., Lopez Cervera, R., Umemoto, N., McNulty, M.S., Clark, K.J., Hammerschmidt, M., Ekker, S.C.
ID
ZDB-PUB-150626-2
Date
2015
Source
PLoS One   10: e0130688 (Journal)
Registered Authors
Ekker, Stephen C., Hammerschmidt, Matthias, Harm, Rhianna, Hatzold, Julia, McNulty, Melissa, Richetti, Stefânia, Urban, Mark, Westcot, Stephanie
Keywords
none
MeSH Terms
  • Alleles
  • Animal Fins/embryology*
  • Animal Fins/metabolism
  • Animals
  • Gene Expression Regulation, Developmental
  • Mutagenesis, Insertional
  • Neuregulins/genetics
  • Neuregulins/metabolism*
  • Oncogene Proteins v-erbB/genetics
  • Oncogene Proteins v-erbB/metabolism*
  • Organogenesis/genetics*
  • Proto-Oncogene Proteins c-akt/metabolism
  • Signal Transduction/genetics
  • Skin/embryology*
  • Skin/metabolism
  • Zebrafish/embryology*
  • Zebrafish/genetics
  • Zebrafish/metabolism
  • Zebrafish Proteins/genetics
  • Zebrafish Proteins/metabolism*
PubMed
26110643 Full text @ PLoS One
Abstract
Skin disorders are widespread, but available treatments are limited. A more comprehensive understanding of skin development mechanisms will drive identification of new treatment targets and modalities. Here we report the Zebrafish Integument Project (ZIP), an expression-driven platform for identifying new skin genes and phenotypes in the vertebrate model Danio rerio (zebrafish). In vivo selection for skin-specific expression of gene-break transposon (GBT) mutant lines identified eleven new, revertible GBT alleles of genes involved in skin development. Eight genes-fras1, grip1, hmcn1, msxc, col4a4, ahnak, capn12, and nrg2a-had been described in an integumentary context to varying degrees, while arhgef25b, fkbp10b, and megf6a emerged as novel skin genes. Embryos homozygous for a GBT insertion within neuregulin 2a (nrg2a) revealed a novel requirement for a Neuregulin 2a (Nrg2a) - ErbB2/3 - AKT signaling pathway governing the apicobasal organization of a subset of epidermal cells during median fin fold (MFF) morphogenesis. In nrg2a mutant larvae, the basal keratinocytes within the apical MFF, known as ridge cells, displayed reduced pAKT levels as well as reduced apical domains and exaggerated basolateral domains. Those defects compromised proper ridge cell elongation into a flattened epithelial morphology, resulting in thickened MFF edges. Pharmacological inhibition verified that Nrg2a signals through the ErbB receptor tyrosine kinase network. Moreover, knockdown of the epithelial polarity regulator and tumor suppressor lgl2 ameliorated the nrg2a mutant phenotype. Identifying Lgl2 as an antagonist of Nrg2a - ErbB signaling revealed a significantly earlier role for Lgl2 during epidermal morphogenesis than has been described to date. Furthermore, our findings demonstrated that successive, coordinated ridge cell shape changes drive apical MFF development, making MFF ridge cells a valuable model for investigating how the coordinated regulation of cell polarity and cell shape changes serves as a crucial mechanism of epithelial morphogenesis.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping