PUBLICATION
A computational design approach for virtual screening of peptide interactions across K(+) channel families
- Authors
- Doupnik, C.A., Parra, K.C., Guida, W.C.
- ID
- ZDB-PUB-150225-3
- Date
- 2014
- Source
- Computational and structural biotechnology journal 13: 85-94 (Journal)
- Registered Authors
- Keywords
- Computational docking, Homology modeling, Ion channels, Protein–protein interactions, Venom peptides, Virtual screening
- MeSH Terms
- none
- PubMed
- 25709757 Full text @ Comput Struct Biotechnol J
Citation
Doupnik, C.A., Parra, K.C., Guida, W.C. (2014) A computational design approach for virtual screening of peptide interactions across K(+) channel families. Computational and structural biotechnology journal. 13:85-94.
Abstract
Ion channels represent a large family of membrane proteins with many being well established targets in pharmacotherapy. The 'druggability' of heteromeric channels comprised of different subunits remains obscure, due largely to a lack of channel-specific probes necessary to delineate their therapeutic potential in vivo. Our initial studies reported here, investigated the family of inwardly rectifying potassium (Kir) channels given the availability of high resolution crystal structures for the eukaryotic constitutively active Kir2.2 channel. We describe a 'limited' homology modeling approach that can yield chimeric Kir channels having an outer vestibule structure representing nearly any known vertebrate or invertebrate channel. These computationally-derived channel structures were tested "in silico for 'docking' to NMR structures of tertiapin (TPN), a 21 amino acid peptide found in bee venom. TPN is a highly selective and potent blocker for the epithelial rat Kir1.1 channel, but does not block human or zebrafish Kir1.1 channel isoforms. Our Kir1.1 channel-TPN docking experiments recapitulated published in vitro "findings for TPN-sensitive and TPN-insensitive channels. Additionally, in silico site-directed mutagenesis identified 'hot spots' within the channel outer vestibule that mediate energetically favorable docking scores and correlate with sites previously identified with in vitro thermodynamic mutant-cycle analysis. These 'proof-of-principle' results establish a framework for virtual screening of re-engineered peptide toxins for interactions with computationally derived Kir channels that currently lack channel-specific blockers. When coupled with electrophysiological validation, this virtual screening approach may accelerate the drug discovery process, and can be readily applied to other ion channels families where high resolution structures are available.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping