PUBLICATION
            Pineal-specific agouti protein regulates teleost background adaptation
- Authors
- Zhang, C., Song, Y., Thompson, D.A., Madonna, M.A., Millhauser, G.L., Toro, S., Varga, Z., Westerfield, M., Gamse, J., Chen, W., Cone, R.D.
- ID
- ZDB-PUB-150209-1
- Date
- 2010
- Source
- Proceedings of the National Academy of Sciences of the United States of America 107(47): 20164-71 (Journal)
- Registered Authors
- Chen, Wenbiao, Cone, Roger, Gamse, Josh, Toro, Sabrina, Varga, Zoltán M., Westerfield, Monte
- Keywords
- pigmentation, camouflage, zebrafish
- MeSH Terms
- 
    
        
        
            
                - Adaptation, Physiological/genetics*
- Melanosomes/metabolism
- Animals
- Zebrafish/genetics
- Zebrafish/metabolism*
- Pigmentation/genetics*
- Pigmentation/physiology
- Receptor, Melanocortin, Type 1/antagonists & inhibitors
- Gene Expression Regulation/physiology
- Pineal Gland/metabolism*
- Agouti-Related Protein/metabolism*
 
- PubMed
- 20980662 Full text @ Proc. Natl. Acad. Sci. USA
            Citation
        
        
            Zhang, C., Song, Y., Thompson, D.A., Madonna, M.A., Millhauser, G.L., Toro, S., Varga, Z., Westerfield, M., Gamse, J., Chen, W., Cone, R.D. (2010) Pineal-specific agouti protein regulates teleost background adaptation. Proceedings of the National Academy of Sciences of the United States of America. 107(47):20164-71.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Background adaptation is used by teleosts as one of a variety of camouflage mechanisms for avoidance of predation. Background adaptation is known to involve light sensing by the retina and subsequent regulation of melanophore dispersion or contraction in melanocytes, mediated by α-melanocyte-stimulating hormone and melanin-concentrating hormone, respectively. Here, we demonstrate that an agouti gene unique to teleosts, agrp2, is specifically expressed in the pineal and is required for up-regulation of hypothalamic pmch and pmchl mRNA and melanosome contraction in dermal melanocytes in response to a white background. floating head, a mutant with defective pineal development, exhibits defective up-regulation of mch mRNAs by white background, whereas nrc, a blind mutant, exhibits a normal response. These studies identify a role for the pineal in background adaptation in teleosts, a unique physiological function for the agouti family of proteins, and define a neuroendocrine axis by which environmental background regulates pigmentation.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    