ZFIN ID: ZDB-PUB-130104-4
Manual drainage of the zebrafish embryonic brain ventricles
Chang, J.T., and Sive, H.
Date: 2012
Source: Journal of visualized experiments : JoVE   (70): e4243 (Journal)
Registered Authors: Chang, Jessica, Sive, Hazel
Keywords: none
MeSH Terms:
  • Animals
  • Cerebral Ventricles/chemistry*
  • Cerebral Ventricles/embryology*
  • Cerebral Ventricles/surgery
  • Cerebrospinal Fluid/chemistry*
  • Drainage/methods*
  • Zebrafish/embryology*
PubMed: 23271011 Full text @ J. Vis. Exp.
ABSTRACT

Cerebrospinal fluid (CSF) is a protein rich fluid contained within the brain ventricles. It is present during early vertebrate embryonic development and persists throughout life. Adult CSF is thought to cushion the brain, remove waste, and carry secreted molecules. In the adult and older embryo, the majority of CSF is made by the choroid plexus, a series of highly vascularized secretory regions located adjacent to the brain ventricles. In zebrafish, the choroid plexus is fully formed at 144 hours post fertilization (hpf). Prior to this, in both zebrafish and other vertebrate embryos including mouse, a significant amount of embryonic CSF (eCSF) is present. These data and studies in chick suggest that the neuroepithelium is secretory early in development and may be the major source of eCSF prior to choroid plexus development.

eCSF contains about three times more protein than adult CSF, suggesting that it may have an important role during development. Studies in chick and mouse demonstrate that secreted factors in the eCSF, fluid pressure, or a combination of these, are important for neurogenesis, gene expression, cell proliferation, and cell survival in the neuroepithelium. Proteomic analyses of human, rat, mouse, and chick eCSF have identified many proteins that may be necessary for CSF function. These include extracellular matrix components, apolipoproteins, osmotic pressure regulating proteins, and proteins involved in cell death and proliferation. However, the complex functions of the eCSF are largely unknown.

We have developed a method for removing eCSF from zebrafish brain ventricles, thus allowing for identification of eCSF components and for analysis of the eCSF requirement during development. Although more eCSF can be collected from other vertebrate systems with larger embryos, eCSF can be collected from the earliest stages of zebrafish development, and under genetic or environmental conditions that lead to abnormal brain ventricle volume or morphology. Removal and collection of eCSF allows for mass spectrometric analysis, investigation of eCSF function, and reintroduction of select factors into the ventricles to assay their function. Thus the accessibility of the early zebrafish embryo allows for detailed analysis of eCSF function during development.

ADDITIONAL INFORMATION No data available